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H. FRANK (University of California, Berkeley)

AND

S. L. HAKIMI (Northwestern University)

Abstract The traffic within the branches of a communication network is often a
random variable with an approximate multivariate normal distribution. The analysis
of such systems has been discussed in a previous paper. In this paper, we consider the
optimum synthesis problem. Nonlinear and linear programming is used to guarantee
that a given flow rate probability between a specified pair of terminals is achieved. In
particular, a Uniformly Most Powerful Statistical Test provides the basis for an optimum
synthesis procedure that appears to be very efficient. The procedure is formulated as a
concave program with quadratic and linear constraints.

I. Introduction. The existing traffic within the branches bu ■ • •, bh of a v vertex
communication network G is usually random. In this case, one may be asked to find
the probability that a flow rate Fti of R or more units can be established between a
specified pair of terminals v{ and v,- . If this probability is too small, it will be necessary
to increase the capacities of the network branches, with minimum cost, until a given
probability level is reached.

The analysis problem of finding Prob [Fit > R} has been discussed previously [1]-[3J.
A general method of analysis requiring knowledge of the joint probability density of the
network flows has been presented [1], while a statistical procedure may be used if the
probability distributions of the flows are unknown [2], For this case, an optimum
synthesis technique, based on linear programming with some integer variables, can
also be given [2], Often, the traffic may be assumed to have a multivariate normal
distribution. Then, Prob {F,,- > R\ may be found by using the methods presented in
our earlier paper [3],

In this paper, we investigate the optimum synthesis of statistical communication
nets when the probability distribution of the existing network traffic may be approx-
imated by a nonsingular ^-dimensional normal distribution. The results of this paper
depend heavily on the analysis of this class of nets already discussed [3].

II. Synthesis procedures based on multidimensional integrals. We have seen
that Prob 'Ftj > R} can be written as

Prob {Fif > R\ = J <£(?/,) dyx J <j>(y2) dy2 ■■■ J 4>(yr) dyr , (1)
r

H Suyi >ki q),
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where 4>(y) is the standard normal density function, and s,-,- (j = 1, • ■ • , r; i = 1, • • • , q)
is a known constant. This expression is complicated but could be evaluated by means
of a digital computer. Let us begin with the simplest form of the synthesis problem.
We are allowed to modify only one branch of the network. Assuming equal costs, we
must find the "best" branch to modify. (By "best," we mean the branch which gives
the required improvement with minimum cost.)

Suppose that we increase the capacity of branch bk from cok to cok + Ack . It should
be clear that Prob {F,-,- > R\ is a nondecreasing function of Ack . Let the cut-sets of G
be renumbered so that bk £ A{ , i = 1, 2, • • • , t and bh (£ A,- , i = t + 1, ■ • • , q. Then

Prob \Fij > R] = Prob f min \A{\ >R — Ack , min |A,-| > 72}, (2)

and an upper bound to this probability is given by

Prob \Fti > R} < Prob { min |A;-| > R\. (3)
t + 1 < J < Q

Now the right-hand side of Eq. (3) is the probability that, in the graph Gk , obtained
from G by shorting (i.e., replacing bk by a branch with infinite capacity) branch bh ,
the maximum flow Fbetween vertices v{ and vf is at least R.

Under our normality assumption, equality in Eq. (3) can only be attained by increas-
ing Ack to infinity. Then the values of cut-sets l-AJ , • • • , |A,| will always be at least R.
Equality can never be attained for any finite value of Ack because the probability dis-
tribution of |A, | (i < t) is positive over the entire real line. However, in reality, we
are dealing with bounded distributions. That is, if F,- is the random flow in bf , there is
a natural bound /imal to the magnitude of F,- (i.e., Prob {F, > /imax} = 0). For example,
if G is a telephone network, the flow in b,- could never exceed the number of people on
earth (assuming that only people use telephones). This means that there is a finite Ac*
such that an increase in the capacity of bk beyond this value will not result in a corre-
sponding increase in Prob {Fa > R\. In fact,

Prob {Fn > R J = Prob { min \Aj\ > R} (4)
t+i<i<Q

if and only if
b b

Ack ̂  R "f- ^' bufj max y , bijCQj , i 1, • • • , t. (5)
i - 1 j -1

Thus, we could find the (approximate) maximum flow rate probability obtainable by
increasing the capacity of a single branch bk by finding Prob {Fktj > R) for the graph Gk.
Therefore, the problem of increasing Prob {Fu > 7?} by increasing the capacity ck =
coh + Ach is routine and depends only on techniques for evaluating the integrals given
in Eq. (1). Moreover, we do not increase the complexity of the problem if we are in-
terested in uniformly increasing the capacities of a subset (or of all) of the branches of G.
Graphs with uniform branch capacities are of special interest in the theory of communi-
cation nets [4]. For this class of graphs, synthesis techniques are conceptually simple.

In Sec. II of [3], we gave bounds for Prob {Fu > R}. These bounds are

£[n*' (pm-,y2y - Ri
(l - pm,»)1/2

4>iy) dy < Prob {F,-,- > R j
(6)

*/.".[ n (pmai) y - R

(1 — p 1/2
max/

4>(y) dy,
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where pmin and pmax are the minimum and maximum correlation coefficients of the jA,| ,
$ is the cumulative distribution function of the standard normal variable, and

b

R ~ H Mcf - Hj)
Ri = jv^]^]]175

Clearly, if pmin = 0 (i.e., there are at least two disjoint cut-sets), the lower bound in
Eq. (6) becomes

II [1 - $(/?,-)] < Prob {F„ > R] (7)
i = l

and, in general,

n H - «*<>] < £ [fl« (PmiT,)l"y - R,

(1 - P»in)1/2 4>(y) dy. (8)

We want to guarantee (with minimum cost) that Prob {F,-,- > R J is at least some
probability p0 . One suboptimum approach to this problem is to guarantee (with mini-
mum cost) that the lower bound in Eq. (7) is at least p0. We then have a new problem,
which can be stated as

Find Ac > 0, such that

h' Ac is minimized (9a)

and

II [i - mi;)} > P„. Ob)
i = 1

Let 7T,- = 1 — $(R>), i = I, q. The constraint of Eq. (9b) can be written as

II T. > Po , (10)
t = l

and since = $_1(1 — ir,), we have the relation

R - X bij(Cj - Mi) = /3,$_1(1 - *"<), i =!,■••, 1, (11)
i = l

where $ = Var |yl, | . Therefore, the entire problem of finding a minimum cost Ac can
be written as

Find Ac > 0 and numbers -zrj , • • • , ira such that

h' Ac is minimized (12a)
and

II Ti > Po , (12b)
» = 1

0 < 7T, < 1, % = 1, ••• , q, (12c)
b

bijipoj + Ac, - /i,) + ^i$_1(l ir{) R ~ 0, i = 1, • • • , q. (12d)
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Furthermore, if x > 0, it is possible to show that $(a;) is concave and for x < 0, <E>(.t) is
convex. Hence for 1 > 7r, > §, $_l(l — 7rt) is concave and for 0 < cE>-1(l — x.)
is convex. It is easily seen that the set of 7r; for which n-,- > p0, is a bounded coxivex
set. Hence, if pn > (I)", 7r,- > § and we have a concave programming problem [5] of
the form

Find Ac > 0 and xj , • • • , x„ such that
h' Ac is minimized (13a)

subject to

Il^>Po, (13b)

? < x, < 1, i = 1, ■ ■ ■ , q, (13c)

d! Ac + ptg(r{) +k<= 0, i = 1, ■ • • , q, (13d)
where dj = (6a , bi2 , ■ ■ • , bib), k{ — d{ (c0 — y) — R and <?(x;) is a concave function
of x,- . This problem can be written as a concave program with separable constraints [5],
if we introduce a new variable y and reformulate the problem as

Find Ac > 0, ivl , ■ ■ ■ , x„ and y such that

h' Ac is minimized (14a)
and

y > Pa , (14b)
I < x, < 1, i = 1 , • • • , q, (14c)

d; Ac + iSi^Ti-i) + fc, = 0, i = 1, • • • , q, (14d)

In y = 23 ln • (14e)
t' = l

This problem could readily be solved with existing nonlinear methods. The only draw-
back is that the number q could be extremely large and thus the program could have a
large number of constraints. (For example, a graph with 50 vertices could have millions
of cut-sets.)

Suppose pmin > 0. We will now show how an optimization procedure might be based
on the lower bound given in Eq. (6). Unless the Ri appearing in this bound are negative
numbers, it can be seen that Prob \Fu > R} is small. Let R* = —Rit and let R =
min (R\ , , R+„). Then, if ax = (pmi„)1/2/(l — Pmin)1/2, a2 = 1/(1 — pmin)1/2, and
fl — &<%/(Xy

Prob {Fti > R\ > [fl $(0ly + a2R\) J>{y) dy

> J ^'(a,y + a2R+)<t>(y) dy.
(15)

Also, we may write

[ $\aiy + a2R+)<f>(y) dy

= [ $\anj + a2R+)4>(y) dy + [ ^(a.y + a2R+)<f>(y) dy, (16)
J — oo J —aR +
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and since $(0) = § > $(axy -j- «2jR+), for all y in the interval — °° < y < — aR*,

/~aR+ /-j\q *-aR+ / l\« + l

$>\axy + a2R+)4>(y) dy < J <j>{y) dy < . (17)

We can therefore neglect this term and use the approximation

f + a2R+)<t>(y) dy = [ <&Xaiy + a2R+)<j>(y) dy. (18)
— OO J-aR +

Let z = + a2R+. For z > 0, we can substitute the approximate expression [6]

Hz) = §[1 + (1 - e"2,VT)1/2] (19)
into Eq. (18) to obtain

J _ &(aiy + a2R+)4>(y) dy = ~ (|)' f ~ [1 + (1 - e-2-")"2]«»(* ~g^) dz. (20)

Expanding $"(iz) as given by Eq. (19) into a binomial series, we obtain

*'(*) = (I)' £ (®)(1 - e-"v')fc/2, (21)

and we may further expand the factor

(1 - e-22'/*)t/2

into another binomial series. The integral on the right-hand side of Eq. (20) may then
be written as

(R+)
eVl

I (A-l)/2 ///„ 1\/o\
(22)

* = 0; k even ^1 j — 0 ^ J '

and

+ t "f" <-»•(<*" ,)/2V,.on,
Jb — l;A;odd "l j' = 0 ^ J '

where

r,.,(iJ+) = JT j <fe

r,-,(#+) = fo (1 - e"J"/T)l/V"',v>(Z ~qa2fi+)

For a given value of Z2+, and 7#1 could be evaluated with numerical techniques.
Furthermore, we know that /<£a(a,y + a2R *) <f>(y)dy is an increasing function of 7?+.
Let i?o be the smallest value of R for which the number given in expression (22) is p0
After we have found R+0 , with numerical techniques, we can solve the suboptimum
synthesis problem.

By definition,

m = R - 53 b,,(Cj - fij) 13, , i = 1, • • • , q (23)

and R+ = min (R \ , ■ ■ • , R+q). Given R^ , we want to find a capacity vector Ac such
that R o = min (R\ , • • • , R\) and h' Ac is minimized. We can do this with the following
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linear program.
Find Ac > 0 such that

h' Ac is minimized (24a)
and

b

2 j(co; + Ac, - Hi) > R - PiRo , i = 1, • • • , q. (24b)
7=1

If fjj = 02 = • • • = |8„, the above linear program becomes exceptionally manageable.
In this case, the constraint becomes

'k

B(c0 + Ac — y) >

U

(25)

where k = R — ftR „ . This problem is discussed by Deo and Hakimi [7] and may be
solved with the linear program:

Find X, > 0, X2 > 0, + ] > 0 and Ac > 0 such that

h' Ac is minimized, (26a)
and "X, - X2"

_ xm+1 .
u* 0, (26b)

X, -}- X2 ^ c0 — y + Ac, (26c)

Xm+1 = k, (26d)

where X, and X2 are 6-dimensional vectors and U* is the incidence matrix of a graph (?*,
obtained from G by arbitrarily orienting the branches of G and then adding a branch bf+1 ,
directed from v,- to v{ .

We can continue in the above vein and formulate other programming problems,
based on the constraint Prob {Fu > i?} > p0 , approximations to this constraint, or
other lower bounds. However, at this point, the numerical difficulties that enter the
picture make such formulations impractical. To obtain a significant increase in the
computational efficiency of our procedures, we must adopt a different approach. One
such approach can be based on the empirical observations of Sees. Ill and IV of [3]. We
have shown that Prob {F,-,- > -R} can, with reasonable accuracy, be written as

Prob jF„ > R) = 1 — 1>(^ ~ , (27)

where v, and a2 ai*e the unknown mean and variance of min (1^1 , • • • , |A,|).
The constraint Prob \FU > /?} > p0 is thus (approximately) equivalent to

1 ~ " Vn ' (28a)

(», - R)/<r > fl0= - $-'(1 - p0), (28b)
or

Vl - <700 > R. (28c)
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We can compute vt and <r by using Clark's Method [8], discussed in Sec. IY of [3]. Then
the constraint given by Eq. (28c) suggests that this method, in conjunction with a
steepest descent technique [5], could be used to attack the synthesis problem. However,
we will use a different approach, based on the statistical test given in Sec. V of [3].

III. Parametric statistical synthesis. Assume that a set of branch flow observations
jff(fc); k = 1 , • • • , n\ is available. As in [2] and [3], 5(1), • • • , J(n) are identically and
independently distributed random variables. Then, if the maximum flow Fu is normally
distributed, a Uniformly Most Powerful Invariant level a test for testing

Hi : p = Prob {Fu > R) > p0 (29a)
against

H2 : p < p0 (29b)
is

Reject Hl if <({?}) < K(n(n - \)yl\K' (30a)

and

Accept Ii1 if <({?}) > K(n(n - l))~l = K', (30b)

where
(m — R)

«{*}) = n ~11/2 '

X) (mk - mf
_ k = 1 J

b

mk = min ~
l<i<Q 7=1

1 n
m = ~ X) mt ,

n k = 1

and K is a constant determined by

J | J exp — exp (t ^ ^ ^ + n1 "<I>~1(1 — Po)j dw dt

= «[2"/2r(^=^)(T(n - l))1

Suppose that on the basis of the observed data, we reject . Then the probability
that this is an incorrect decision is no greater than a. Thus, if a is small, we must
increase the branch capacities of G. We have already given a synthesis procedure when
ff(fc) and Fn have unknown probability distributions [2], We can use the same philosophy
of synthesis if the probability distribution of maximum flow is known. We simply
increase the capacities of the branches of G until i({£F}) > K'; in other words, until //, is
accepted. If this procedure is completed with minimum cost, we have optimally im-
proved the net. Moreover, the probability that Prob {F,f > R] < p0 is minimum
(among all invariant procedures).

Hypothesis Hx will be accepted if

r n m ~R -w, > K'- (3D
X) (mk - rn)2
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Since
b

mk = min X bti(coi + Ac,- - /,(£)),
1 < » < Q 7 = 1

we would like to find values of Aci , • • • , Acb such that Eq. (31) is satisfied. This con-
straint is equivalent to the set of constraints

fh-R - IC'zU2 > 0, (32a)

z = z — z, (32b)

z — (nii , • • • , mn)W(?n1 , • • ■ , mn)' — z > 0, (32c)

where W is an n — n matrix given by

W =

('";)

(>-;

1 _1
n n

I (l--) -- ••• --
n \ nj n n

.1 _I _I
n n \ nj n

1 _1 _1
nun (■ -;)

and z, z, and z are nonnegative variables.

We can force Eqs. (32a)-(32c) to be satisfied with minimum cost, and at the same
time eliminate our dependency on the cut-set matrix B, if we use Deo and Hakimi's ap-
proach [7], with which Eqs. (26a)-(26d) are written. We again define the graph G*.
obtained from G by arbitrarily orienting the branches of G and adding a branch directed
from Vj to i>i . Then, if U* is the incidence matrix of G*, it can be shown that our syn-
thesis problem may be written as

Find Y > 0, Xu > 0, X2t >0 (k. = 1, • • • , «), z > 0, I > 0, z > 0 and A c > 0
such that

h' Ac is minimized (33a)

and

U*P = 0, k = 1, • • • , n, (33b)x„ - x2
Vt

xu + X2t < c„ + Ac — ff(fc), k = 1, • • • , n, (33c)

Hih-R- K'zu2 > 0, (33d)

z = z — z, (33e)

(yi , ■■■ , y«W(yi , • ■ • , y,y- 2 > 0. (33f)
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Thus, the solution of our problem is in the form of a nonlinear program. It can be
shown that for n > 1, the matrix W is positive semidefinite. This means that the
constraint given by Eq. (33f) is concave. The only other nonlinear constraint is the
one given by Eq. (33d). This constraint is convex and, for each fixed z, is linear. The
remaining constraints are linear and there are no dependencies on the cut-set matrix
of G. (The incidence matrix U* contains all necessary information about G. Since U*
is a i' — b matrix, reasonably large nets can be considered.) For each fixed z, we have an
extremely manageable concave programming problem with exactly one nonlinear
(quadratic) constraint. Therefore, for each fixed z we can use standard concave pro-
gramming techniques [5] to obtain solutions. Each such solution will force hypothesis
//, to be accepted with minimum cost for the given value of z. Thus, by varying z and
solving a sequence of such problems, we can find a solution which is arbitrarily close to
the optimal solution. Consequently, if we are willing to allow statistical error in our
synthesis procedure, we can give an optimum synthesis procedure that is quite practical
from a computational point of view.

IV. Conclusions and further remarks. There are other synthesis goals besides mini-
mizing a cost function while achieving a given flow rate probability. For example, we
may be allowed to spend a fixed sum of money to improve an existing network. Nat-
urally, we want to buy the maximum possible improvement and so we could attempt to
maximize the flow rate probability. If we assume linear cost, we have the new problem

Find Ac > 0 such that

Prob {F,j > R} is maximized (34a)
and

h' Ac = Q (a constant). (34b)

We can use the analysis and synthesis techniques that we have already developed to
attack this problem. For example, under the normality assumptions of our parametric
statistical test, the problem reduces to

Find Ac > 0 such that

 — ——=— is maximized (35a)n 1/2 v J

YL (mt — mf
L A = 1

and
h' Ac = Q. (35b)

In many instances, it is adequate to maximize the expected terminal capacity.
Then, if the variance is small, we can expect Prob j/'1,-,- > li\ to be large. Thus, we could
consider the problem: maximize , subject to h' Ac = Q. In terms of our statistical
test, we want to maximize nm = XXj. > consequently, we can solve this problem
via linear programming.

Another objective could be minimum variance. We might be willing to accept a
lower average maximum flow if we are sure that the actual performance of the system
will not deviate far from the average. For the statistical problem, we then minimize
the sample variance

(mk - mf. (36)



114 H. FRANK AND S. L. HAKIMI [Vol. XXVII, No. 1

We must then solve a quadratic programming problem. (Note that we can also easily
constrain the sample mean to be at least some number R* with the constraint m > R*.)

The ideas discussed here could be used to synthesize a communication net, rather
than to improve an existing net. To begin the procedure, it would be necessary to
estimate the local demands between pairs of stations. Then, a set of branch capacities
could be selected so that the local demands are satisfied with a given probability [9].
Then we could begin to consider the terminal capacities between various pairs of stations
in the network. To apply our statistical procedures, we could generate the set of flow
vectors {?(&)} with Monte Carlo techniques. An important feature of our synthesis
procedures is that we do not have to restrict ourselves to improving flow-rate probabilities
between single pairs of stations. Instead, we could consider the index I of the communi-
cation net [4], defined by

V 9

I = £ Z Fif , (37)i-i+i i-\
and a possible synthesis goal could be

Prob {I > k} > p0 . (38)

For this problem, the statistical procedures we have given appear quite promising.

APPENDIX

Illustrative examples

Example 1. Let be the graph shown in Fig. 1. Suppose that the existing branch
flows in (?i are identically and independently distributed normal variables with mean
Hi = 1 and variance a] = I. We wish to guarantee that Prob {I<\2 > 3} > 0.9 by in-
creasing (if necessary) the capacities of the branches of G, .

Assume that the cost function h' Ac = Act + Ac2 + Ac3 + Ac4 + Ac5 . Then, in
order to guarantee that Prob {F12 > 3} > 0.9, we will guarantee that a lower bound to
Prob jF> 3} is at least 0.9. Furthermore, we will do this with minimum cost and will
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thus obtain a suboptimum solution to the problem: Find Ac > 0 such that Prob
{F12 > 3j > 0.9 and h' Ac is minimized.

From Eq. (7),

II [1 - HRi)] < Prob {F12 >3}, (Al)
tvhere

Ri = 3 — 2D bijiCj —
i-1

[Var |A,.|]'

B = (A2)

and , ■ ■ ■ , Aa are the cut-sets of G'j . For G1 given in Fig. 1, the cut-set matrix is

"l 1 0 0 o"
10 0 11

0 110 1

[0011 0J
Also, since F, , • • • , Fs are independent random variables, the variances of |AJ , \A2\ ,
|A3| , and |A4| are 2, 3, 3, and 2, respectively. Therefore, from Eqs. (12a)-(12d), the
nonlinear program which guarantees that Xlt-i [1 — $ (A',)] > 0.9 with minimum
cost is:

Find Ac > 0 and ttx , ir2 , ir3 , ir4 such that

Ac! + Ac2 + Ac3 + Ac4 + Ac5 is minimized, (A3a)

7Ti 7T2 7T3 7T4 > 0.9, (A3b)

0 < < 1 i = 1, — ,4 (A3c)

21/2 X $_1(1 - O + 1 + Acj + Ac2 = 0, (A3dl)

31/2 X $"'(1 - tt2) + 3 + Ac, + Ac4 + Ac5 = 0, (A3d2)

3I/2 X $"'(1 - tt3) + 3 + Ac2 + Ac3 + Ac5 = 0, (A3d3)

21/2 X $_I(1 - tt4) + 1 + Ac3 + Ac4 = 0. (A3d4)

This problem can be solved to give Act = 1.4, Ac2 = 0, Ac3 = 1.4, Ac4 = 0, and Ac5 = 0.
Example 2. Consider the graph G2 shown in Fig. 2. Suppose we are given the
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sequence of observations of branch flow ^(l), 7(2), J(3), 5(4) and 5(5) shown below.
We wish to maximize the expected flow rate from vertex vt to vertex v5 subject to the
constraint that we have a fixed amount Q of capital to spend.

SF(1) = (76, 20, 15, 7, 28, 60, 47)',

ff(2) - (49, 31, 19, 9, 31, 40, 29)',

SF(3) = (83, 37, 24, 11, 40, 31, 36)', (A4)

SF(4) = (57,31, 17,4,25,45, 41)',

J(5) = (61, 25, 6, 7, 17, 55, 50)'.

The cost of increasing the capacity of the ith branch by a unit amount is /i, . Assume
that the specified cost vector h = (A, , • • • , h7)' is given by h = (5, 7, 10, 15, 8, 6, 6)'
and that Q — 500 dollars are available for the improvement of the network. The
initial branch capacity vector is assumed to be c0 = (100, 48, 26, 13, 42, 65, 52)'.

The first step in the synthesis procedure is to construct the graph G% , obtained from
G2 by arbitrarily orienting the branches of G2 and adding branch ba from v5 to Vj . One
possible G% obtained in this manner is shown in Fig. 3. The incidence matrix U* of G% is

r~i o i o o o i o"
0 0 0 10 1—10

0 -1 0 -1 1 0 0 0 • (A5)

1 1 0 0 0 0 0 -1

,0 0-1 0-1-1 0 1.
The problem can now be formulated as the linear program: Find nonnegative vectors
Xlk, X2k for k = 1, • • • , 5 and nonnegative numbers yx , • • • , ya and Ac1 , Ac2 , • ■ • , Ac7
such that

(A6a)
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is maximized, subject to

U*[' = 0, k = 1, ■ ■ • , 5, (A6b)X» - X2,e
Vh

xu + X2t < Co + Ac - ff(fc), k = 1, • ■ ■ , 5, (A6c)
and

h' Ac < 500. (A6d)

The problem is in the standard linear programming format for which computer
programs are readily available. The solution of the problem is Acj = 19, Ac2 = 0,
Ac3 = 33, Ac4 = 0, Ac5 = 7, Ac„ = 0, and Ac7 = 3. Furthermore, it can be shown that
the average flow attainable between v1 and v5 (in excess of the existing branch flows)
is 34 before increasing the capacities of the branches of G and is 71 after the branch
capacities are increased.

Example 3. Let (?i be the graph shown in Fig. 1. Suppose we must guarantee
with probability p0 = 0.9 that a flow rate of at least 3 units can be attained between
vertices i\ and v2 ■ Assume that the maximum flow rate F12 is a normal random variable
and that ten values of the branch flow vector have been observed. On the basis of these
flow vectors, we must determine whether or not Prob {F12 > 3| > 0.9. If we conclude
that Prob {F12 > 3} < 0.9, we must modify the network with minimum cost. Assume
that the cost function is Ac, + h2 Ac2 + h3 Ac3 + /i4 Ac4 + h5 Ac5 where the h{ are
positive constants. Furthermore, assume that the probability of Type I error is specified
to be no larger than a = .1 and that the observed flow vectors are given by

SF(1) =

ff(6) =

SF(2) =

5(7) =

5F(3) =

EF(8) =

m =

m =

5(5) =

SF(10) =

(A7)

The first step in the synthesis procedure is to apply the statistical test given in Eqs.
(29) and (30). To apply the test, we must find K as defined in Eq. (30). Rather than
directly use the definition of K, we will use an approximate method given on page 949
of [6] to find K. According to this method, if a < |, K corresponds to the smallest root
of the quadratic equation

K' (' - srh))'" (4'"'<<"))!] +2 " isr- ij)+ * °>(A8)
where 8 = nl/ $ (1 — p0). From the preceding equation, K == 2.55.
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Now that we have found K, we can apply the statistical test. The test rejects the
hypothesis H0 : Prob {F,-,- > 3} > 0.9 if

h ON""-1/2

-Z3(10)1/2' (A9)

The maximum flows corresponding to ff(l), • • • , (10) can easily be shown to be ml = 2,
m2 = 2, m3 = 2, wi4 = 4, m3 = 3, ma = 3,m7= 4, m8 = 3, m9 = 3, m10 = 3. Therefore,
the left-hand side of Eq. (A9) is equal to —0.0407 while the right-hand side is equal
to .268. Hence, we reject hypothesis H0 . (Note that for this example, the sample mean
is m = 2.9 and the sample variance is 4.9. If the sample mean had been larger than 3.593
and the sample variance were no larger than 4.9, we would accept H0).

The hypothesis that Prob {F12 > 3} > 0.9 has been rejected and so we must increase
the capacities of some of the branches in the network. Let G* be the graph shown in
Fig. 4. G\ is obtained from by arbitrarily orienting the branches of 6', and adding the
branch directed from v2 to v, . The incidence matrix U* of G\ is

U* =

1 1 0 0 0 -1

0 0-1-1 0 1
-10 10 10

0-1 0 1-1 0

(A10)

In order to satisfy the constraint given by Eq. (33b), the following equations must hold
(U* has rank 3 and so we can delete one row, say the last row):

= 0, k = 1, •• ■ , 10 (All)

1 1 0 0 0 -1

0 0-1-10 1

.-10 1 0 1 0_
where X]t = (a?nt, Xm > > %i4t > Zist)' and X2t — (.T2u > > x23k j %24/c > %25/t)'- Further-

Xu X2i
Vt

Figurio -t.
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more, from the nature of the orientations of the branches of G* , it should be obvious
that for any optimal solution, x2ik = x22k = x23k = x2ik = 0 for all k. Consequently, the
flow constraints given in Eq. (All) can be reduced to

%l\k 4" X12k = Uk ,

2-13k T X14k = Vk ! k — 1, " • " , 10 (A 12)

Ik H- ^13J; 4" ^154 ^25k = 0,

The remaining constraints of the synthesis procedure, specified by Eqs. (30c)-(33f), are

XIt +

0
0
0
0

_^254.

<

1
10

3
3
3

3
3.

10

+

Acj

Ac2

A c3

A Ci

Ac,

- ff(fc) k = 1, ••• , 10, (A 13a)

E - 3.0 - .268«1/2 > 0, (A13b)

z = z — z, (A13c)

-(2/i , • • • , yiojW(y1 , • • • , Via)' + z - z > 0, (A13d)

where W is a 10 X 10 matrix with all main diagonal terms equal to 0.9 and all off diagonal
terms equal to —0.1.

The synthesis procedure can now be stated as: Find nonnegative numbers Acl ,
Ac2 , • • • , Ac6 , yi , • • • , y10 , Xnk {i = 1, 2; j = 1, • • • , 5; k = 1, • • • , 10) such that
hx ACi + • ■ ■ , + h5 Ac5 is minimized subject to the constraints given in Eqs. (A12) and
(A13a)-(A13d). This problem has a total of 123 variables and 83 constraints. Further-
more, only two of the constraints are nonlinear. If we fix z, Eq. (A13b) becomes linear
in the remaining variables. We must now solve a concave programming problem with
122 variables, 82 linear constraints and one positive semidefinite quadratic constraint.
Each solution for a given z is a minimum, cost solution for the original problem when the
sample variance is bounded. Therefore, by varying this parameter over a "reasonable"
range, we can come arbitrarily close to the minimum cost problem with unspecified
sample variance.

As a special case of the above problem, wre will briefly consider the situation for
which the sample variance z = 0. Under this condition, Eqs. (A13b) and (A13d) become

1 10Yq S Vk > 3, (A14a)

(Vi , , Vio)W(y1 , ■■■ , y10)' = 0. (A14b)

Equation (A14a) is trivially linear. Furthermore, Eq. (A14b) can be replaced by a set
of linear equations. It is well known that any quadratic form can be reduced to a sum
of squares via a linear transformation of the form £ = TY. That is,

10

(jji j ■'' > 2/io)TI (yi , • • • , 2/10)' = S ot-Ai i (A15)
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where £< = / aand the a,'s and a,,'s can be routinely found via the methods of
Lagrange or Jacobi [10]. Furthermore, it can be shown that the rank of W is nine and
consequently exactly one a, = 0 (say «10) while the remaining a/s are positive. Hence,
Eq. (A14b) can be written as

2>^ = 0. (A 16)
t = 1

However, the only way this equation can hold is if = • • • = £9 = 0. Therefore,
we may replace Eq. (A16) (and thus Eq. (A14b)) by the system of linear equations

10

oiijUi = 0 i = 1, • • • , 9. (A17)
i-i

This, in turn, means that for 1 = 0, we must solve a routine linear program similar to the
one solved in the preceding example. Thus, we can easily find an upper bound for the
minimum cost.
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