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-NOTES-

ON THE TIME-DEPENDENT HEAT CONDUCTION AND
THERMOELASTIC PROBLEMS*

By CLIVE L. DYM and HERBERT REISMANN (State University of New York at Buffalo)

Introduction. An important problem in the theory of elasticity is the determina-
tion of stresses and displacements in a body subjected to thermal and mechanical
loading. Complications arise in the instances of time-dependent heat generation, body
forces, or boundary conditions. It has been customary to attack these problems using
operational techniques [1], although in many cases inverse transforms are difficult to
obtain, if indeed these inverses exist.

We present here a general solution to the uncoupled thermoelastic problem, i.e.,
a general solution to the heat conduction equation (including internal heat generation)
to obtain the temperature distribution, and then the solution of the Navier equations
to obtain the displacements of an elastic solid in the presence of the above temperature
field and any mechanical loads. Time-dependent boundary conditions, body forces, and
heat generation are easily included. The method, an extension of the Williams method
[2], [3], makes use of the principle of superposition and classical mathematical techniques.

The heat conduction problem. The temperature distribution of an isotropic homo-
geneous solid with internal heat generation is governed by the well-known Fourier heat
equation [4]:

kV2T + Q/C = dT/dt. (1)
A properly posed problem in heat conduction may be stated as follows: Find the tempera-
ture distribution T(x, t) (note: we shall use x to denote the triplet of Cartesian co-
ordinates xx , x2 , x3) in a body V, bounded by the surface S, satisfying the differential
equation (1), and the following conditions:

in V, T(x, 0) = T0(x),
on S, , T(x, t) = f(x, t), (2)

dT(x, t) ,
011 2 ' —dn— = 9 X' ''

where St + >S2 = S.
For the homogeneous problem, where there is no internal heat generation and where

/ = g = 0 in Eqs. (2), it is known that temperature distributions may be sought in
the form

T(x, 0= E e(n\x)e^"'. (3)
n = 1

The eigenfunctions 0[n) (x) are the solutions to the differential equations
fcVV"' + X„0<n) = 0. (4)
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The eigenvalues Xn are determined through the satisfaction of the homogeneous boundary
conditions by the functions 8ln\x). In general there are a countable infinity of eigen-
values X„ , each associated with a particular characteristic function. These shapes are
orthogonal, i.e.,

[ 6{m\x)6in\x) dV = 0, (5)
J V

provided Xm ̂  Xn , and also are of arbitrary amplitude. For the future development, we
will remove this arbitrariness by imposing a normalization condition,

[ 6tu\x)0ln\x) dV = 1. (5a)
J V

We shall now seek a solution to the full problem characterized by Eqs. (1) and (2).
On the basis of the assumptions that the normalized eigenfunctions 0<n> form a complete
set, we shall construct a solution of the form

T(x, t) = Tu\x, t) + Z eM(x)qM(t). (6)
n= 1

The function TU)(x, t), termed the "static solution," satisfies

kV2T(,) + Q&A = 0, (7)

together with the boundary conditions (2). Thus by superposition, all the boundary
conditions are satisfied by (6). The generalized time coordinate q(n\t) introduced in (6)
will be used to account for the initial condition (2) as well as the time variation of the
boundary conditions and the heat generation through the static solution. Substituting
the solution (6) into (1) and recalling (4) and (7) yield the result

E r'Wlg'-'CO + Kq(n\t)\ = (8)
n=l OL

If we multiply (8) by the eigenfunction 6in)(x) and then make use of the orthonormality
condition, we can reduce (8) to a first order differential equation for the generalized
time coordinate:

qM(t) + \nqM(t) = Qu)(t), (9a)
where

QM(t) = - f T"\x, t)6'n\x) dV. (9b)Jy

At time t = 0, we note from (7) and (2) that

T„(x) = T"\x, 0) + E ffM(x)gM(0). (10)
n= 1

Again making use of orthonormality conditions, we can determine the initial value of the
generalized time coordinate to be

q'"'(0) = Q("'(0) + [ T0(x)d'"\x) dV. (11)
JV

In view of the modified initial condition (11), the solution to the ordinary differential
equation (9a) is easily found to be
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An) (0 = [ T0(x)e(a\x) dV e_x"' + Q<n\t) - K f Q<")(r)e~x"<,_r) dr. (12)
«/ y J ^ 0

Thus the system of Eqs. (6), (7), (2) (4) and (12) forms the complete solution to the
heat conduction problem posed by Eqs. (1) and (2). Thus we are able to specify a tem-
perature distribution.

The thermoelastic problem. The motion of a heated elastic solid is governed by
the Navier equations [5]

> + (X + + Fi — (3\ + 2/i)aT, i = pUi . (13)

Once the displacement field is known, the components of the stress tensor may be
calculated from the relation

Tn = \Uk.kdij + + w,-.i) — (3A + 2fi)aT5u . (14)

A well posed problem in dynamic thermoelasticity might be phrased as follows:
Determine the displacement field in the volume V of an elastic solid bounded by the
surface S satisfying equation (13), with the body force components Ft and a temperature
distribution T(x, t) specified in V, and the following additional conditions:

in V, u,(x, 0) = u%r) and m,(x, 0) = u%x),

on , Ui(x, t) = ji(x, t), (15)
v

on S2 , Ti = rijVj = g,(x, t), ^

where Si + S2 = S, and vt are the components of the normal to S2 , and is the stress
vector.

In attempting a solution to the system of equations (13) and (15), we follow the
approach outlined above and in [2], [3]. For the homogeneous problem, where the body
forces vanish, the temperature distribution is isothermal, and the boundary conditions
(15) are homogeneous, solutions to the equation (13) may be found in the form

u,{x, t) = E WW"'. (16)

lUft, + (x + n)Ufit + pu\uy = 0. (17)

The characteristic mode shapes are the solutions of the system of partial differential
equations

Ml

A denumerable set of eigenvalues are determined in the usual fashion. It is also well
known that with each characteristic value oin there is associated a particular set of mode
shapes U\n\x). By standard methods we can determine the orthogonality condition, and
if we adjoin again a normalization condition, we can write

I P(x)ur(x)ur(x) dv = $nm, (i8)

where Snm is the Kronecker delta.
We shall now use the normalized eigenfunctions to find the solution to the full problem

posed by (13) and (15). We assume that the displacement components can be expressed as

U,(x, t) = u\'\x, o + E U\n\x)qM(t). (19)
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The "static" displacements are the solutions of the differential equations

pUi'ji + (^ + + Fi ~ (3X + 2/i)aT',< = 0 (20)

that satisfy the complete boundary conditions (15). Again the principle of superposition
indicates that the boundary conditions are completely satisfied by (19). To obtain the
generalized time coordinate we note that the substitution of (19) into the full equation
(13) yields:

Z +ulqU\t)\ = -pii. (21)
71= 1

As in the heat conduction problem, the equations (21) can be converted to relatively
simple ordinary differential equations

qM + colqM = Qu\t), (22a)

where

Q'n\t) = - I pixW^ix, t)UT\x) dV. (22b)
J v

Making use of the initial conditions (15), together with standard techniques, we can
write down the solution to the differential equation (22a) as

r\t) = [ Pw°C/!n) dV cos wj + - [ pu°iUln> dV sin «„< (23)
_J V _ C0„ _J y _J

+ Q("'(0 ~ f Q("'(r) sin [co„(< — r)] dr.
Jo

The system of Eqs. (19), (20), (15), (17) and (23) gives a complete solution to problems
of dynamical thermoelasticity with time-dependent (as well as spatially-dependent)
body forces, temperature distribution, and boundary conditions.

Conclusions. A method has been demonstrated whereby solutions for time-de-
pendent problems in heat conduction and thermoelasticity may be obtained with only
the use of classical linear mathematics. The key to this application of the principle of
superposition is the separation of the original problem into a "static" problem, where
the inhomogeneous terms are retained both in the boundary conditions and the differ-
ential equations while the inertia term is neglected, and a dynamic problem with homo-
geneous boundary conditions that is solved by an eigenfunction expansion that accounts
for the initial conditions and the inertia effects of the static solution. Calculations to be
presented elsewhere [3] indicate that the present expansion usually converges much
more rapidly than conventional normal mode solutions.
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