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1. Introduction. The strong analogy between the potential theory and classical
-elastostatics is rather well known and has been extensively exploited for various boundary
value problems [1]—[9]. In this paper we stress the strong analogy between the Stokes
flow equations of hydrodynamics and the equations of classical elasticity—statical as
well as dynamical. The general integral formulation of Stokes flow problems was
initiated by Lorentz and forms the basis for Oseen's treatise on low Reynolds number
hydrodynamics [10]. This method has been recently extended by Williams [11]. It can
be applied rather effectively to the corresponding boundary value problems of elasto-
statics and elastodynamics.

In this paper we discuss three cases. The first case is that of finding the displacement
field as well as tractions on a rigid obstacle of an arbitrary shape when translated within
an unbounded elastic medium. There results a simple set of integral equations to solve.
Since the problems of this nature have been solved extensively, we assume that these
integral equations have a known solution. We next consider the case when there is a
rigid boundary in the neighborhood of the obstacle. This problem again reduces to that
of solving a set of integral equations similar to the first set but more complicated in
nature. It is shown that the approximate solution of these equations can be carried out
completely, provided the solution for the corresponding case of the infinite medium is
known.

The rest of the paper deals with the problems of dynamic elasticity. We have
recently studied the vibrations of axially symmetric bodies in an unbounded elastic
medium by the method of matched asymptotic expansions [12], In the present paper
Ave prove that the integral equation approach can be effectively employed to study the
same problem and furthermore to generalize it to the obstacles of arbitrary shapes. The
paper ends with the example of a thin rigid circular disk which is attached to the free
surface of an elastic half space and excited by a periodic force along a direction which
makes an angle a with its axis of symmetry.

The main advantage of the present approach is that it permits a unified treatment
of a large variety of boundary value problems. In many cases the first order corrections
to the known displacement field in an infinite elastic space may be obtained without
detailed calculations or the use of the theory of special functions. Furthermore, it is
possible to treat obstacles of arbitrary geometries as effectively as it is to treat a body
having the spherical symmetry.

2. Elastostatics. The nondimensionalized Navier-Cauchy equations of elasto-
statics are

(X + tx) grad 0 + mV2u = O. d = div u, (1)
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where u (ut ,i= 1, 2, 3) is the displacement vector and X and n are Lame's constants of
the medium. The displacement vector u is considered to be a function of Cartesian
coordinates x,- . The above equations have been nondimensionalized by introducing a
characteristic geometric length 'a' in the problem. We can derive integral equations
for the solution of Eqs. (1) which are analogous to Green's formulas in potential theory.
In order to present these formulas we define certain tensor functions which are the
appropriate generalizations of the Green's function of potential theory

Let us consider a light rigid body B and let S be its bounding surface. We further
assume that the differential equations (1) have a regular solution in the elastic medium
surrounding B. We shall designate the domain exterior to B as D. Let P = xt (xl, x2, x3),
be any specified point in D. To obtain the field caused by the uniform translation of B,
we calculate the contribution of each elementary point P° at P and then add all these
contributions. Let us also keep in mind that, due to the mathematical nature of the
differential equations (1), the condition of u at «> plays an important role in the solution
of these equations. We can now define the above-mentioned tensor function T(2\,-)
as a function of r and r0 , where r and r0 are the position vectors of the points P and P°
respectively

T = ^ J\jV2<£ - §rad Srad «

rri _ J_ f". d2<ft _ X + n d2(t> "I
" 8tt L " dxk dxk X + 2n dx{ dXjj '

where the function <f> is a function of |r — r0| only and U = 5,,- are the components of
the Kronecker delta.

Let us now suppose that satisfies the biharmonic equation

V> = 0. (.3)
It then follows by substitution in (1) that

or + m) grad 0 + mV2T = 0, ^

fx jl a de' i d2Ta A
(X + dxt + " ~ °'

where

6i = dTik/dxk . (5)

This means that for each i (1, 2 or 3), the vector whose components are 7\, , T,2 , TiX
and the dilation d{ constitute solutions of the Eqs. (1). We are thus left with the bi-
harmonic equation (3) to solve.

The quantity cj> is a function of (r — r0) only. Therefore the biharmonic equation (3)
written in spherical coordinates becomes

V2W = 0, = (6)

Since we are looking for such a function T which tends to zero as [r — r0] tends to infinity
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(to be precise T is 0(l/r) at °°), the solution appropriate to our problem is 0 = (r — r0).
This yields

V2<f> = | 2 . , (7)|r — r0|

T = —8tt
X + 3^ Sg X + n (Xj — x°i)(xi — x°)

_X + 2/t \r — r0| X + 2/i |r — r0|3

4tt(X + 2^) |r - r0

(8)

(9)

This tensor field T,,- was introduced by Somigliana [2] and has appeared in literature
thereafter. For instance, it has been recently used by Diaz and Greenberg [13] in
connection with the evaluation of the bounds for the solution of the boundary value
problems of elasticity.

It is now possible to write down an expression for u(F), i.e., the solution of Eqs. (1)
at an arbitrary point F in the region D by the method which closely resembles the one
used in the potential theory. In fact we surround II with an infinitesimal sphere of
radius r = a such that this sphere lies entirely outside S. The boundary surface now
consists of two parts—the surface S of B and the spherical surface S, given as r = a.
Let D„ denote the volume covered by S,. By starting with Green's second identity

- ,vy>dv - fs(ld/n->£)is, (.0)
where V = D — D, , S = S + Sa and n is the unit vector drawn outward and normal
to S; setting / = w,- , g = , it can be shown, in precisely the way it is done in the
potential theory, that [2], [14], [16]

u(r)" ~h £+(x+")to}'T ~ u'{" £+(x+M)6n}. dS. (11)

By the help of Eq. (4) and Green's theorem, it follows that if u is constant on S,
then Eq. (11) reduces to

u(P) = - f f-T dS, (12)
J s

where

f = fi dujdn (X ix) 6 n. (13)

The above formulas may be applied to the problem of the displacement field generated
by the light rigid obstacle B which is embedded in an unbounded elastic space and is
given a uniform translation d0 (d0/a in the nondimensional units). Therefore the bound-
ary conditions are

u = (d0/a) I, on S, u —» 0 asr —> (14)

where I is the unit direction along the translation of B.
Clearly, the displacement field is given by Eq. (12). Furthermore, it follows from

the definition of the traction field t that

ti = X 9 rii + fi Kj(Ui,,■ + Uj ,), (15)
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and from the definition of the stress tensor that the total static force F acting on the
body B is given by the formula:

F = [ fdS. (16)
J s

Thus the boundary value problem for the displacement field created in D, reduces,
by the help of relation (12), to the solution of the integral equation

do I = - J f-T dS. (17)

Since the solutions of boundary value problems of this nature are known for various
configurations of B, we shall assume that we know the solution of the integral equation
(17). With the help of this information we shall proceed to solve more complicated
cases.

3. Boundary effects. In this section we consider the first order effects of boundaries
on the tractions experienced by a light rigid body which is given a uniform translation.
We now have two surfaces S, and S2—the surface Si of the displaced body B and the
surface S2 of the rigid boundary such as a cylinder enclosing B. In the region enclosed
by any given closed surface S2 we define a tensor T which satisfies Eq. (1) with the
additional condition that T = 0 on S2 . If both P and P° are within S2 , then e-T
may be interpreted as the displacement field at P in the region enclosed by the rigid
surface S2 when a concentrated force parallel to the unit direction e is acting at P".
Furthermore, T may be written as Tj + T, , where T, is the Green's tensor defined in
the previous section, satisfies Eq. (1) and has Green's function type singularity at
infinity:

Ti = ^ (UV2 |r - r0| - grad grad |r - r0|). (18)

The tensor T2 also satisfies (1) but is regular in the region under consideration. We
assume that T2 may be determined explicitly for any particular surface S2 .

Now, proceeding formally as in the previous section, we obtain the same expression
for u(P) as given by the relation (11) for any point P in the region bounded by S2 and Si ,
with S, completely enclosed within S2 :

u(P) - - Js^ {M fn + (X + M)to}-T - u-{m g + (X + M)fln}dS, (19)

where P° is a variable point on Si and, as before, n denotes the outward drawn normal
to Si . The additional condition of u in the present case is that it vanishes on S2 .
Moreover, when S2 recedes to infinity, we rederive the result (11) by putting T = .
For the case when u is constant on St , we get the result similar to (12) with the total T:

u(P) = -j* f-T dS = ~ + (X + M)to|.T dS. (20)

The above formula is applicable to the problem of the displacement field generated by
the translation of the light rigid particle B which is given a uniform displacement v in
the region bounded by the rigid boundary S2 . The formula (20) gives the required
displacement field, while the formula
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= f tdS (21)
J x.

gives the corresponding static force F acting on B. Since we are going to relate this
force with the one experienced by B in an infinite elastic space, let us denote the static
force F which B would experience in an unbounded medium by .

A precisely similar situation arises in slow viscous flow problems. There the concept
of a resistance tensor is very handy. Analogously, we define a quantity which we
shall call the traction tensor. For the case of an infinite elastic space we shall denote it
as •too ($»,-,•)• It has the property that the total static force exerted on a body which has
been given a uniform translation v within an infinite elastic space has the value
— (d0/a) <l»co-v. For the present case, when the elastic space is bounded by a rigid
surface S2 , the corresponding traction tensor is and the corresponding static
force F is equivalent to —(d0/a) O-v.

There arises a parameter e in this problem. This is equal to the ratio of a, the charac-
teristic dimension of B, to the minimum distance between a point of $i and a point of S2 ■
We take this quantity to be small in the present analysis. We further observe that T
and Ti are both functions of r and r0 and since T2 = T — Tj , T2 is also a function of r
and r0. If the origin 0 is taken to be some point of $1 and P and P° are also both on S1 ,
then it follows that

T2 = T° + r• [grad T2]r_ro_0 + r0-[grad° T2]r=ro,0 + 0(e), (22)

where T„ = T2(0, 0) and the term grad0 implies the differentiation with respect to the
components of r0 .

The boundary value problem for the displacement field generated by the translation
of B gives rise to an integral equation similar to the one obtained in the previous section.
In fact the corresponding formula in the present case is

— I / f • (Tj + T2) dS, (2.3)a j

with P and P0 both on Si . If we neglect the contributions of the second and third terms
on the right-hand side of Eq. (22) which are of 0(e2), i.e., if we replace T2 by T',1 in
Eq. (23), it follows that

^ I + F-TS = - [ f-TidS. (24)
a J Si

This equation is the required integral equation for the displacement vector in the space
enclosed between S2 and . But this same integral equation can be considered to give
the displacement vector in an unbounded medium with B having been given the uniform
displacement (d0/a) I + F-T° . Therefore Eqs. (21) and (24) give

4*,,F = -p I + F-T")• 4*00 , (25)

and the solution of Eq. (25) is

F = —— + Tj]"1. (26)
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Furthermore, it readily follows from Eq. (25) that if F on the right-hand side is replaced
by Fa , then the formula becomes

F =* —I + , (27)

and the error in Eq. (27) is of order 0(e).
We now consider the simplified case when I is parallel to one of the principal axes

of the tractions on Si ; these axes being defined so that, in translation through an un-
bounded medium parallel to one of them, the total static force on B is in the direction
of the translation. In this case Eq. (25) takes a simple form. In fact, let e! , e2 , e3
stand for the unit eigenvectors of <»> „ such that

<!»«, = e2 + $„2 e2 e2 + $003 e3 e3 , (28)

and decompose the tensor T° into the components T?2ij with respect to these three unit
vectors as the basis. Also let I = e! . Substituting these expressions in Eq. (25), we
derive the formula

F/F. =1/(1 - XF.), (29)
where X is independent of the form of Si . Similarly, when B is moving parallel to a
principal axis of the traction, it follows from Eq. (27) that

F/F„ ~ 1 + X , (30)
where X F„ is 0(e); hence, neglecting the term 0(e2), Eqs. (29) and (30) are identical,
as are Eq. (26) and (27).

4. Elastodynamics. We have recently derived formulas [12] which give the dynami-
cal displacement field in an infinite elastic space wherein is embedded a light rigid
axially symmetric particle. This particle is excited by a periodic force acting in the
direction of its axis of symmetry. In this section we discuss the generalization of that
problem for a particle of an arbitrary shape. This particle is depressed by an amount
dl = d0 e'"' I, where I is a unit vector, into the unbounded medium by an exciting force
of the same frequency «.

In the equations of elastodynamics,

(X + p) grad d + fj. V2 u — p d2u/dt2 = 0, (31)

we set u = u0 e'"1 and drop the zero subscript, obtaining thereby the equation

(X -j- /i) grad f?-j-juTv7"u-f-pco2u = 0, (32)

where p is the density of the medium. If we now nondimensionalize this equation by the
help of the characteristic length a of the body, it takes the form

(X -f- /jl) grad ^-^/xVu-f-pc^ct u = 0. (33)

In our previous work [12] on axially symmetric bodies, we defined two dimensionless
parameters:

M2 = p gj~ a2/(X + 2/i); in2 — p oj' a2/p.. (34)

Furthermore, a material constant t was defined as

T = M/m = (m) /(X + 2M). (35)

These quantities are helpful in the present analysis as well.
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The next step is to derive an appropriate integral representation for u. In fact, if
we repeat the analysis as given in Sec. 2 for the case of static elasticity with present
differential equations, we find that the value of u at an arbitrary point P in the medium
exterior to S is given by the same expression:

u = - J f-T - + (X + dS, (36)

where f, as before, is equal to n du/dn + (X + aO 0 n- The tensor T is now the Green's
tensor for Eq. (33) and we assume that it has the expression

T = U(V2 + M2)<t> - grad grad <t>,X + U (37)

T,, = 5,,(V2 + M2)<p - X + — - -(^--
X + 2n dXi dXj

The function <t> satisfies the differential equation

(V2 + m2) (V2 + M2) 0 = 0. (38)

An appropriate solution of Eq. (38) is

4> = 14ir (m — M ) (39)
exp (—iM |r — r0|) _ exp ( — im |r — r0|

lr - r„| [r - r0|

Let us note that the parameters M and m are of the same order of magnitude because
their ratio r is just a material constant. When we substitute (39) in (37) and then the
resulting value of T in (36), we observe that u is a complex quantity. Furthermore, if
we expand this value of T in powers of m, we get

T = T° - (r3 + 2)mU + 0(m2), (40)

where T0 , as dexived in Sec. 2, is

T° = {UV2 lr ~ r°l - \ + 2n grad grad lr _ r°l}'

The elastodynamic boundary value problems can now be solved in the same fashion
as the previous elastostatic problems. Let us first observe that the boundary conditions
are u = (d0/a) I on S and u satisfies the radiation condition at c°. The integral equa-
tion governing the displacement field is obtained by taking P in Eq. (36) to be on S
and setting u = (do/a) I on S. As u is constant on S, it may be taken outside the inte-
gral in Eq. (36), It now follows from the relation

— vi T = (X + fi) grad 0 + n V2 T (42)
and Green's theorems that

/ ^ + (X + ju)On) dS = - m f T dV, (43)

where V denotes the interior of B. Recalling the formula for the total force F,

F = f idS, (44)
J s
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we readily obtain from the relations (36), (40), and (43) the result

(r3 + 2)mF = - [ T0-f dS + 0(m2). (45)
J s

do y
a 12 x

When m = 0, the above equation reduces to Eq. (17).
By following the same steps as we did in deriving relation (27), we get the corre-

sponding force formula as

F " '"-'{a 1 ̂  IS *-• ')} + 0<•»')• <46>
For a body displaced parallel to one of its principal axes of traction which, as defined
before, are the directions such that — (d0/a) <I> „ -u = F„ = —F„ u, Eq. (46) takes the
simple form

F = — F„{1 + (a/do) (FJ/12*) (r3 + 2) m) I + 0(m2). (47)

If we set F„ = X0/na2, where X0 is given in the physical units, the formula (47) reduces
to the one derived for the axially symmetric bodies by us [12]. In our previous work we
had mistakenly1 assumed that the result (47) is applicable also to nonaxially symmetric
configurations.

As an application of the general formula (47), we consider the case of a thin rigid
circular disk of radius a attached to the free surface of an elastic half space and excited
by a periodic force of frequency co acting at angle a to its axis of symmetry. Let ej be a
unit vector in the plane of the disk and let e2 be unit vector along the axis of symmetry.
The force formula for a translation of amount d0 of the disk along the directions e2 is
known and when written in physical units is [15]

X0 = Sirfj. d0(l — t2) a. (48)

Similarly, the static force for a uniform translation of amount d0 along the direction e! is

A"0 = 16-7T fi d0(r2 + 3) 1 a. (49)

When these formulas are substituted in Eq. (46), we derive the required force in physical
units:

X = —rua tf0e'"'[8(l — t2) cosae2[l + (2i/?nv)(\ — t')(t3 + 2)m}

+ 16(r2 + 3)"1 sin ae1 {1 + (4t737r)(r2 + 3)"(r3 + 2)mj]. (50)
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