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TORSION OF THE SINGLE SPAN SUSPENSION BRIDGE!'

BY

R. W. DICKEY
Unaversity of Wisconsin

1. Introduction. The purpose of this paper is to find the deflections of a single span
suspension bridge under live loads (e.g. traffic) which are unsymmetrically distributed
across the width of the suspension bridge stiffener truss (unsymmetric loading).

If the live load is distributed symmetrically across the widih of the stiffener truss
(symmetric loading) there exists a well-developed theory—the so-called deflection theory
of suspension bridges (cf. [1, pp. 75f.])—in which the support cables are approximated by
a string and the stiffener truss is approximated by a beam of suitable flexural rigidity.
Because of the nonlinearity of the deflection theory it is not in general possible to solve
the deflection theory equation explicitly. However, solutions are given for certain special
cases in the books by Steinman [2, pp. 264-267] and Johnson, Bryan, and Turneaure
[3, pp- 290—293]. More recently Heller, Isaacson, and Stoker [4] have described a method
for obtaining numerical solutions for bridges with arbitrary live loading and variable
flexural rigidity and in the case of constant flexural rigidity Dickey [5] has proven the
existence and uniqueness of solutions corresponding to a tension in the cable. However,
the deflection theory is, by its nature, a two-dimensional theory and yields no information
as to the behavior of a suspension bridge under unsymmetric loading. In view of this
it would appear to be of interest to consider a theory in which unsymmetric loadings
could be treated. For this purpose a generalization of the deflection theory will be devel-
oped in which the stiffener truss is treated as an indeterminate, pin-connected, three
dimensional, elastic frame.

Sec. 2 of this paper will be devoted to describing the technique of finding the deflec-
tions (given the forces) of a three-dimensional linear elastic frame with many members.
In Sec. 3 the cable equations will be combined with the truss equations and a method will
be described, similar to that discussed in [4], for finding a solution of the resulting system
of equations. Finally, in Sec. 3, a numerical example will be treated in which the deflec-
tions of a suspension bridge are found for both symmetric and unsymmetric live loads.

2. The stiffener truss. For the purposes of this paper a suspension bridge stiffener
truss is assumed to be a periodic, three-dimensional, elastic frame, i.e. the truss is con-
structed of identical box-like modules, called bays, joined end to end along the truss
axis.® The faces of each bay (cf. Fig. 1)—including those faces which are internal to
the stiffener truss—have crossed diagonals. In reality stiffener trusses are built with
statically determinate faces (although the whole truss is statically indeterminate); thus
the example to be treated in this paper is more indeterminate than would normally be
encountered in practice. To complete the description of the truss it will be assumed that

1Received November 16, 1967. Sponsored by the National Science Foundation, Contract No.
GP-7814.

2In practice the stiffener truss is built in this manner although the strength of the members may
vary from bay to bay.
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(cf. Fig. 1) the joints 1 and 3 are fixed, while the joints 4N 4+ 1 and 4N + 3 (N bays)
are free to roll in the axial direction. The object now is to discuss the reflections when
vertical loads are applied the joints 4; — 2,4;,4; + 2,and 4; +4,j=1,2, --- , N, i.e.
when vertical loads are applied at the joints on top of the truss.

If vertical loads P, are applied to the joints on top of the truss each joint, for example
joint m, will be displaced an amount £, , 7., , { , in the z, y and z directions. At the same
time each bar in the truss will be deformed. Thus a bar of length I, , connecting joints
17 and n will develop a strain e, , and a stress o;,, . Assuming the joints are pin-connected
(and that there is no local buckling) the total energy of the truss will be

2.1) W=73 Z € n0inlin + Z P,

where the first sum is taken over all bars in the truss and the second is taken over those
joints on which there is an applied force. If the strains are small Hooke’s Law may be
assumed, i.e.

(2‘2) E,',,,Gi',, = Oin

where E, , is the Young’s modulus for the bar (z, n). The strain in bar (7, n) will be
defined as the ratio of the change in length to the original unstrained length, i.e.

(2.3) € .n = Ali,n/li.n = ei.n(Ei y Niy g‘i ) En y NMay g-n)'
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For example, to first order the strains in the bars (47 — 3,47 — 2) and (45 — 2,45 — 1)
(cf. Fig. 1) are given by
€43, 4j-2 = (5‘4;—3 - fu—z)/l:z

and
_ SinW(§a;oy — $ay-2) + €08 W(Ey;oy — E45-s)

e P T =
timi=s (& + B

From the preceeding remarks it is clear that (2.2) and (2.3) may be used to reformulate
(2.1) in terms of the displacement. Thus

(2-4) W = % Z Ei.nli.ne?,n(éi y My $i 3 Eny s fn) + Z Pki'k .

The equation (2.4) formulates the energy of the truss as a (quadratic) function of the
displacements. The equilibrium equations may be found from the requirement that

(2.5) oW /3t =0W /dn,=0W/d¢; = 0, (6=2,4,5,6, --+ ,4N—1,4N, 4AN+2, 4N +4)
and
(2-6) aW/a"MN-u = aW/aU4N+3 = 0;

i.e. the derivatives are taken with respect to all the displacements except those which are
fixed by the external constraints (for the truss in Fig. 1 those displacements which
are fixed by the external constraints are £, , n1, 1,8, s, §3 5 faver ) $ansa 5 Eansr , and
tiv+3)- The resulting equations are linear in the displacements and may be written in the
form

2.7 Su=f

where Sisa (12N + 2) X (12N + 2) ‘stiffness’ matrix, u is the vector of displacements,
and { is the vector of applied forces. It may be verified that the matrix S is symmetric
and block-tridiagonal and in fact for the truss in Fig. 1 takes the form

(A, B,
BT A, B, 0
T
29 B 4
0 BI A, B,
L By A,

(the superscript T implies the transpose) where 4, , B, , and BS are 12 X 12, 4,is6 X 6,
B,and BT are 6 X 12and 12 X 6, A;is 8 X 8, and B; and B} are 12 X 8 and 8 X 12.
The matrix (2.8) is written under the assumption that the corresponding members in
each bay have the same elastic properties. However, if the properties vary from bay to
bay the corresponding stiffness matrix will remain block-tridiagonal but will lose the
periodic character which is exhibited in (2.8).

Various iteration schemes (cf. [4, pp. 64 ff]) were employed in an attempt to solve
equation (2.7). However, it was found that while these schemes were successful for
trusses having a few bays (& 10), it was very difficult to attain convergence as the
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number of bays were increased. Since the object was to solve trusses with up to a hundred
bays the iteration schemes were abandoned in favor of a more direct method. The
method which was chosen makes use of the block-tridiagonal character of the coefficient
matrix S to write (cf. [6, pp. 58 ff])

2.9) 8 =LU
where
A, ]
B A, 0
(2.10) L= B 4
0 B Ay
L 3 Ayl
and
1, T o |
I, T,
2.11) U= RIS
0 Iy Ty
L Iy
I, are identity matrices (I, is 6 X 6, I, through Iy are 12 X 12, and Iy, is 8 X 8) and
(a) A=A, I, = A{'B,,
(b) A, = A, — BT, , T, = A;'B,,
2.12) (e A;=A,—B7l,,, T,=A7B, (#=3,---,N—-1),
@ Ay = A, — BiTy,, Ty = AyB;,

(e) AN+1 = A3 - B;'I.‘N .

It may be noted that because of the relatively small size of the matrices A; (at most
12 X 12) it is feasible to calculate their inverses by Gauss elimination. Once those inverses
have been calculated the matrices L and U may be found from (2.12) and in addition,
since it is only necessary to invert the matrices A; in order to invert L, the vector L™'f is
easily calculated. Thus it only remains to solve Uu = L~'f. However, U is upper tri-
angular so that the solution of this system is also easily found.

The method which has been described above was actually carried out numerically
on a CDC 6600 computer for trusses having a variety of dimensions and elastic properties.
It was found that, even for trusses with a large number of bays (= 100), a complete
solution of (2.7) could be found in a few seconds.

3. The suspension bridge. The object of this section is to couple the two cable
equations to the equations for the stiffener truss which was discussed in Sec. 2 and to
solve the resulting nonlinear system.
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The vertical displacement of the cable W;(y) (j = 1, 2 distinguishes the two cables)
due to live loads 7;(x) on either side of the stiffener truss satisfy the differential equation
(cf. [7, pp. 277 ff])

@3.1) H; + hy) &°W,/dy* = (hi/H)ag;(y) — p:s(y) G = 1,2)
with boundary conditions
(3.2) w;0) =W;) =0, (Gj=1,2)

where [ is the length of the stiffener truss, ¢;(y) is that portion of the dead load (e.g. the
weight of the stiffener truss and cables) which is supported by cable j, p;(y) is that portion
of the live load which is supported by cable j, and H; (constant) is the horizontal dead
load tension in cable j. The term k; , the induced live load tension, is given by (cf. [7,
pp. 281 ff])

EA, [! .
(33 =g Weswa  G=-1,2

where A, and [, are the cross-sectional area and length of the cables; E, is the Young’s
modulus of the cables.?

The support cables of a suspension bridge are connected to the stiffener truss by short
cables called hangers. However, since these hangers are placed at relatively short intervals
it is reasonable to assume that the connection between the support cables and stiffener
truss is continuous. In addition it will be assumed that the hangers are inextensible. Thus
the vertical displacement of the stiffener truss at a point ¥ will be the same as the vertical
displacements of the cable at that point, e.g. (cf. Fig. 1)

(3.4a) Winlis) = Sanee n=1---,N—-1)
and
(3.4b) Winlis) = $anss m=1,---,N—1).

The object now will be to replace the differential equations (3.1) by centered difference
equations in which the interval size is taken as l;5 , i.e. the length of a bay in the y direc-
tion. If this is done the equations (3.1) become

(3-53) (H1 + hl){ﬁﬁo — 2042 + fm-z} + P1(nlxs)l|5 =

h/H)q(nls)lys (n=1,.--,N — 1)
and
(8.5b)  (Hy + k2){finss — 2ansa + $an) + Po(ndis)lis =

(he/H3)ga(lys)lys (n =1, .- ,N — 1)

where from the boundary condition (3.2), {; = ¢4 = Cunvee = Savea = 0.
Since the cables support a portion P;(y) of the live load it follows from the discussion
in Sec. 2 that the deflections of the stiffener truss are a solution of

(3.6) Su=r—p,

*For simplicity it has been assumed that the elastic properties of the two cables are the same.
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where r is a vector containing r,(nl,5) as elements and p is a vector containing p;(nl,5) as
elements. Thus the deflections of a suspension bridge are given by the solution of the
equations (3.5), (3.6), and (3.3) for the unknown vector quantities u and p and the two
scalar quantities 2, and h, .

Before discussing the solution of the equations (3.5), (3.6) and (3.3) it is convenient
to express the equations (3.5), and (3.6) as a single system. If this is done the resulting
system takes the form

3.7 8'(hy s ho)u' = 1" + ¢'(he s ho),

where 8'(h, , hy) is a block-tridiagonal matrix, «’ is a vector containing the elements of
the vectors u and p, 7’ is a vector containing the elements of the vector r, and ¢'(h, , h,)
is a vector containing elements h,q,(nl,5)/H, , and hoq.(nl;s)/H, . Thus the problem of
finding the deflections of a suspension bridge is reduced to solving the equations (3.3)
and (3.7).

The nonlinear system of equations (3.3) and (3.7) were solved by iterating on the
induced live load tensions h, and h, and solving (3.7) at each step by using the ‘L-U’
method described in Sec. 2. Thus at the nth step the vector u! was found by solving

S'(RY, hun = 1" — ¢'(hy , h3)
where A} = hY = 0. However, it was found that if at each step A7 and A} were calculated
from (3.3) (using the trapezoidal rule) and substituted directly into (3.8) the resulting
iteration scheme converged to a solution having compressions in the cables. (A similar
difficulty was encountered in [4] in attempting this type of iteration procedure on the

deflection theory equations.) In order to find a solution having tensions in the cables a
convergence parameter w was introduced by defining a quantity v} as

n EcAc l n .
(3.9) Yi= gL fo aWiydy (G=1,2
and then determining A{"*" from

(3.10) Y =1 =k +w; (=12

where as above h] = 2 = 0. In the case of symmetric loading (identical loads on either
side of the stiffener truss) it was possible to find a value of w by trial and error such that
the iteration scheme (3.8), (3.9), and (3.10) converged to a solution having tensions in
the cables. However, if the loads are not the same on either side of the truss the simul-
taneous iterations on the induced live load tensions 4, and A, no longer converge (in the
case of symmetric loads h, = h,, but this is not true if the loads are unsymmetric) and it
is necessary to modify the procedure.

In order to attain convergence in the case of unsymmetric loads iterations on the
induced live load tensions &, and h, were performed independently. Thus a value of %, ,
say h, = h} , was determined and the following iteration scheme was employed:

(3.11) S’(hi", hiyul, =1 — ¢'(hi*, Ri)
where hi"** is determined from
(3.12) bt = (1 = w)hi" + wni®

and
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i ECA¢ ! in
(3.13) vir = 28 [ Wi dy.
Hllc (]

It was found that with the correct choice of w; (w, was found by trial and error) the above
iteration scheme converged, i.e. hi* — hi and 4/, — u/ . When convergence had been
attained in (3.11), (3.12), and (3.13) a new value of h, , say hi*', was found from

(3.19) 2= (1 — whi + @i
when
ft.
el VERTICAL DEFLECTIONS
1.7 SYMMETRIC LOADING
1.6 NSYMMETRIC LOADING

1 1 1 1 1 1 1 1

0] 400 800 1200 1600 2000 ft.
Fia. 2.
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i EcAc !
3.15) v = f w@)Wi) dy.

The iteration scheme (3.11), (3.12), and (3.13) was then repeated with this new value of
h, and hi° = hi (to begin the scheme hl® = h3 = 0). It was found that it was possible to
determine a value of w, (by trial and error) such that the above iteration scheme con-
verged for unsymmetrically loaded bridges of up to a hundred bays. In fact, even with a
rough determination of », and w, convergence of the above scheme for a hundred bays
required only about ten minutes on a CDC 6600 computer.

In the preceding discussion a method has been described for finding the deflections
of a suspension bridge under arbitrary live loads. It is now of interest to treat an example.
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For this purpose a variety of problems were solved for a suspension bridge having a
stiffener truss of length 2000 feet, depth 10 feet, width 100 feet, and constructed of one
hundred bays. In Figs. 2 and 3 the vertical deflections and p;(y) (that portion of the
live load which is supported by the cables) are plotted for both symmetric and unsym-
metric loading. In both these cases the total live load on the stiffener truss was the same;
however, in the symmetric case identical vertical live loads of 3250 lbs. were applied to
every joint on the top of the truss, while in the unsymmetric case identical vertical live
loads of 6500 lbs. were applied to the joints on one side of the truss and no load on the
other side. In order to accentuate the torsional affects due to unsymmetric loading the
strength of the internal members were reduced to a tenth of that of the other members
of the stiffener truss. Even so it may be seen from Fig. 2 that under the moderate load-
ings which have been described the torsional affects are quite small. The oscillatory
behavior of p;(y) (cf. Fig. 3) appears to be characteristic of unsymmetric loading.
However, as the magnitude of the live load is increased the overall affect is to reduce the
amplitude of these oscillations. Thus under sufficiently large live loads the oscillations
become negligible and the curves of p;(y) versus y take on the overall appearance of
parabolas.

During the construction of suspension bridges the situation may arise in which a
portion of the stiffener truss is freely supported by the suspension cables (i.e. the ends of
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Fig. 4.
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the stiffener truss are unsupported). The equations describing this modified system may
be obtained by simply striking from the equations (3.8) those equations which refer to
the members which have been removed, while retaining those equations which refer to
the cable. (Note also that in computing vi"* and v} the dead loads ¢,(y) and ¢.(y) are zero
over a portion of the interval of integration, cf. (3.13) and (3.15)). No difficulty was
encountered in treating situations of this type by the method described above. As an
example, the vertical deflections and p;(y) are plotted in Figs. 4 and 5 for a suspension
bridge with unsupported ends. The physical characteristics of the truss and cables were
identical to those which were used for the example in Iigs. 2 and 3. The (symmetric)
live load was 325 lbs. at each joint.
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