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TORSION OF A FINITE ELASTIC CYLINDRICAL ROD PARTIALLY
BONDED TO AN ELASTIC HALF SPACE*

BY

L. M. KEER (Northwestern University)
AND

N. J. FREEMAN (University of Miami)

Abstract. A solution is given for the problem of axially symmetric torsion of a
finite elastic cylindrical rod partially bonded to an elastic half space. The problem is
formulated in a manner that involves coupling between dual Dini series and dual in-
tegral equations. Auxiliary functions are introduced and the problem is reduced to the
solution of a Fredholm integral equation of the second kind. Approximate closed-form
results are obtained when the radius of the bonded region is less than one-half the radius
of the cylinder. Fractional order singularities in the stress are noted and calculated for
the case when the crack vanishes.

1. Introduction. The purpose of the present paper is to consider the problem of
axially symmetric torsion of a finite, elastic cylinder of unit radius that is partially
bonded to an elastic half space in a circular region c < 1. This work is related to a
recent paper by Sneddon, Srivastav and Mathur [1], who consider the problem of a
finite cylindrical rod partially bonded to a rigid surface. In [1] dual Dini series are
reduced to the determination of an auxiliary function from a Fredholm integral equation
of the second kind, and a study of this equation was made. It was found that when c < \
the kernel in the integral equation could be neglected with no significant loss in accuracy.
Since a similar integral equation arises from the formulation of the present problem,
conclusions deduced from [1] are also of importance here.

When c < 1, the stress singularity is always square root, and when c < the approxi-
mation of [1] may be applied to give closed-form results for quantities of physical interest
such as stress, torque-twist, and strain energy. It is also possible to deduce the critical
torque for crack propagation in this case. The special case of c = 1 (no crack) is also
discussed. Here, the integral equation becomes identical to one studied by Freeman
and Keer [2]. It was suggested in [2] that singularities in stress of fractional order were
likely to occur but no attempt was made to deduce their value. Westmann [3] in a dis-
cussion of [2] has calculated possible values of these singularities by using the method
of Williams [4]. By considering an asymptotic expansion of the kernel it is shown that
stress singularities arising from an investigation of the present integral equation are
identical to those calculated by Westmann.

2. Formulation of problem. We consider a cylindrical rod of length d (where the
radius is taken as the unit of length) that is imperfectly bonded to an elastic half space.
Cylindrical coordinates p, 6, and z are used and the coordinate system is located at the
top of the rod (z = 0, 0 < p < 1). The top of the rod is assumed to undergo displacement
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through an angle 7 by means of a rigidly attached disk. The half-space occupies the region
3 < z < 00, and the rod-half-space system is perfectly bonded in the region 0 < p < c,
z = 8. Since this problem is one of axially symmetric torsion, there will be no dependence
upon 6. The only displacement is

u = (0, u» , 0), (1)

the nonvanishing stresses are given by

Szg = dUg/dz, S„e = p d/dp(p~lUg) (2)

and the only nontrivially satisfied equation of equilibrium is

d2Ue/dp2 + p""1 dUg/dp — p'U) + d2us/dz2 = 0 (3)

where <r.« = nSzg , <Tfg — fiSpB , and n is the shear modulus.
It is desired to determine the displacement functions from the boundary value

problem defined by Eq. (3) and the following boundary conditions:

d/dp(p~1ue) =0 (p = 1, 0 < z < 5) (curved surface of rod stress free) (4)

ue = yp (z = 0, 0 < p < 1) (5)

u\ —> 0 as (p2 + z2)1/2 —> co (6)

U* = Ug (z = S, 0 < p < c) (7)

ju dug/dz — p.* du*/dz (z = 8, 0 < p < c) (continuity of stress) (8)

ti* du*/dz = 0 (z=5, c<p<o°)

(exposed surface of half-space stress free) (9)

n due/dz = 0 (z = 5, c < p < 1)

(stress free portion of cylinder half-space interface) (10)

where starred quantities refer to the half-space and unstarred quantities refer to the
rod (e.g. p.* is the half-space shear modulus), and us , u% are governed by (3).

3. Reduction of problem to integral equation. It is desired to reduce the boundary
value problem defined by Eqs. (3-10) to an integral equation. The methods available
for such a reduction are now somewhat standard and the analysis is similar to that
given in [1], [2], The displacements ue , u% are given the following representations:

CO

ug = yp + b0pz + X) KJiiKp) sinh (X„z) (0 < z < 5) (11)
n= 1

where A— Ji(X„) = Jt(K) = 0, n = 1, 2, • • • , and

u* = [ A(£) exp [ ^(z - 8)]J^p) d£ (5 < z < °°) (12)
J 0

where (11) will satisfy (3, 4, 5) and (12) will satisfy (3, 6).
By choosing the substitutions

On = cosh (X„5)//i*, a0 = p.bn/p.*, a. = —p.*/p., a = 8a (13)
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and using the approximation1
tanh (X„5) = 1 (14)

the remaining equations, (7-10), may be written in the form:
CO /»00

aa0p + a X) K^nJiiKp) + / d£ = TP (0 < p < c) (15)
n=l J0

aoP + E anJi(X„p) + f UWiUp) da = 0 (0 < p < c) (16)
a = 1 «^0

[ SA(QJ&p) da = 0 (c < P < 00) (17)
Jo

«oP + X) anJi(Kp) =0 (c < P < 1). (18)
n = l

Following techniques given in Copson [5] and Srivastav [6], the function A(£) and the
series (18) are given the representations below:

A{£) = W/2)UY2 f t1/2g(t)J1/2m dt (19)
Jo

aoP + £ aJ^Kp) = 4- f gMt2 - pTw2 dt Hie - p) (20)
n=> 1

where //(a;) is Heaviside's step function. The Dini coefficients in (20) may be solved for
directly as

a0 = —8 [ tg(t) dt (21)
J 0

an = -2[«/1(X„)]"2 [ sin (X„t)g(t) dt. (22)
Jo

The results, when put back into (15, 16), lead to the following integral equation:

g(t) = x(0 + P f L(t, u)g(u) du (23)
"0

where x(0 = ^yt/ir, p = yu*/V and

r /, •» 4 /0,. . A sin (X„f) sin (X„u)\L(«, «) = -- |85to + 2J J' (24)

Equations (23, 24) are identical to Eqs. (20, 21) in [2] except for the limit on the integral.
Equation (23) is a Fredholm integral equation of the second kind. Using the following
integral representation

zsin - o - 4 tu
n= 1 l\An) 4 K-

- - [ t[8tul2(y) - sinh (ty) sinh (uy)] dy (25)
7T Jo h\V)

1The approximation (14) implies that the rod is "long." For all practical purposes this means
that S > 1.4.
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developed in [2], where S(x) is Dirac's delta function, and introducing the function G(t) as

G(t) = (1 + / ~ + — (1 - 25) f ug(u) du1 (26)
/ I 7T J o J

(23) becomes

G(t) = t + co [ M(t, u)G(u) du (27)
Jo

where co = 0/(1 + /S) and

M(t,u) = -^ [ [8^/2(2/) — sinh (£?/) sinh (tu)] dy (28)

for 0 < /3 < co. The remainder of the paper will be concerned with the determination
of significant physical quantities. It is appropriate to remark here that equation (27),
except for the constant co < 1, is identical to (2.7) in [1] and as /3 —> 00 identity is obtained.

4. Stress, torque, and stress singularity. The results in this section and in the one
to follow will be given in a closed form representation. This is possible due to the obser-
vation made in [1] that when c < | the kernel in their equation (2.7) was negligible com-
pared to other terms. Thus if c is sufficiently small the approximation, when valid in
[1], will certainly be valid here, since the present integral equation has its kernel multi-
plied by co < 1. In particular, the torque-twist relation in [1] was found to differ from
an exact result by less than 1% when c < §, and the kernel was ignored. In the following
the kernel will be neglected and certain physical results based upon this approximation
will be obtained.

Using (2), (12), and (19) the stress at the interface can be shown to be

s" = ^Tp[ 9mf ~ prU2 dt {z = 8)' (29)

If the kernel in (27) is ignored, then g(t) may be written approximately as

git) = It (30)
where

$ = 4t/tt(1 + f3 - i), i = 16/3(1 - 25)c73tt. (31)
Thus the stress may be written in the form

S.e = -Mp(c2 - pT1/2 (2 = 5). (32)

From (29) the torque may be obtained as follows:

T = 4^'

or using (30), as

[ tg(t) dt (33)
^0

T = 16ym*c3/3(1 + /3 - i). (34)

The St. Venant torque Te is given as

Tc = wny/28. (35)
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Defining the ratio r as r = T/Tc , it is seen that

r = 32 5/3c3/37(1 + 0 - 4>) (36)
and as |3 —> 0° equation (3.5) in [1] is obtained.

From equations (12, 30) the displacement may be calculated as

«. = yp/(1 + $-*) (z = 5) (37)
and thus the displacement to the approximation given is linear.

Of significance is the stress intensity factor N, which is defined as

S.,(c~) = N/s1/2, s = c - p. (38)
Thus

N = -mc/2)1/2 = -4^7(c/2)1/2A(1 + /3 - V). (39)

It is seen from (39) that N(c) will increase, reach a maximum, and then decrease. That
N vanishes at c = 1 will now be shown in the discussion of stress singularities for the
case of no crack.

Attention is now directed to the specific case when c = 1. In this case (27) or series
representation (23) are no longer Fredholm integral equations since the kernel will
possess a strong singularity at t = 1. If c < 1, then g (c) will be a constant and the stress
singularity is always square root. When c = 1 the singularity has to be investigated by
other means. If g(t) is assumed to be of the form

g(t) = Atil - t2)' (40)

where A, v are constants then the stress is of the form
S£, = BP( 1 - p2)-1/2+' (41)

where B is a constant. An investigation of (23, 27) by means of a test function of the
form (40) is thus suggested.

When the test function (40) is inserted into (23), the resultant equation may be
written as

Atil - fy = (47/tt - A)t - 2'pAT(v + l)i1/2[*S*i_1,„+3/2,i/2,-»-i(l, 0] (42)

where I is a constant and <S*„iT s(u, v) is defined in Srivastav [6]. Equation (42) is
operated on by d/dt(JTl) and the resultant equation may be written as

2vt(i - i2)"'1 = -2"+1pv(y + i)r1/2 2~"t3/2(i - ryVrW

dy\ ■ (43)

The singularity present in the integral portion of (43) may be isolated by adding and
subtracting the asymptotic form of the integrand as £ —> oo to obtain

(44)

2?t(i - <y 1 = -2'+I/3i> + i)r1/2<2"r2(i - 0"7rw

- (r1/2Ar) exp [-2/(1 - t)]y-> dy + /?«)}
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where H (t) is nonsingular as t —> 1. Equation (44) becomes (as t —> 1)

2"vt(i - 0'"1 = 2*+1/3r(i> + i)[r(i - f)(i - 0'"'/2x - *3/2(i - <)'"V2r(c)]

+ nonsingular terms (45)
and the result

sin (ttv) = j3/(1 + j8) (46)

is obtained by equating terms with a like singularity. It is seen from (46) that 0 < v < 5
with the equalities v = 0, \ corresponding to the limiting cases of Reissner-Sagoci
(/3 = 0) and St. Venant torsion (/3 = °°) respectively. Thus when c = 1, Ar = 0 and
the stress singularities are of fractional order and have the values predicted by Westmann
[3] using other techniques. A slightly modified method can be used to derive (46) from
(27).

5. Strain energy and crack propagation. Information can be obtained concerning
the influence of the crack when compared with an undamaged system if the approxima-
tion when c < | used earlier is applied here. Using the value for torque given in (34),
the strain energy V = \ Ty can be written as

v = 3T i + 0U + J£p (47)32yu*c

where 17 = 25 — 1.
For the undamaged material an accurate approximation to the strain energy was

given in [2] as

y = 8M*W1/2r [1 + ^ + <48>

where F = 4- 1)/T(v + 5/2). Here v depends upon /3 and values for 0 = 1/3, 1 are
given in [2], Using (47, 48) and after some manipulation, V is determined as

T7 _ T2 n _l on 1 i w i/kj, , (1 + /3)[37T1/2r/4c3 - 1]\
8M*W1/2r [ + ^ + v ^ + 1 + j8(l + 4vT/ir1/2) J ^

where the second term on the right-hand side of (49) represents the increase W in the
strain energy. Thus

The surface energy of the crack is

U = 2tt(1 - c~) T0 (51)

and applying the criterion

d(U - W)/dc = 0, (52)
the critical torque is found to be

Tc = (8/3)[2x/c5T„/(l + /3)]1/2 (c < .5). (53)

It is interesting to note that this value of critical torque is identical in form to that
obtained by the authors [7] for the torsion of two finite, partially bonded cylinders.



1969] TORSION OF A FINITE ELASTIC CYLINDRICAL ROD 573

References
[1] I. N. Sneddon, R. P. Srivastav, and S. C. Mathur, The Reissner-Sagoci problem for a long cylinder

of finite radius, Quart. J. Mech. Appl. Math. 19, 123 (1966)
[2] N. J. Freeman and L. M. Keer, Torsion of a cylindrical rod welded to an elastic half space, J. Appl.

Mech. 34, 687 (1967)
[3] R. A. Westmann, Discussion of [2], J. Appl. Mech. 35, 197 (1968)
[4] M. L. Williams, Stress singularities resulting from various boundary conditions in angular corners of

plates in extension, J. Appl. Mech. 19, 526 (1952)
[5] E. T. Copson, On certain dual-integral equations, Proc. Glasgow Math. Assoc. 5, 21 (1961)
[6] R. P. Srivastav, Dual-series relations—II. Dual relations involving Dini series, Proc. Roy. Soc. Edin.,

A, 66, 173 (1964)
[7] N. J. Freeman and L. M. Keer, Torsion of elastic cylinders in contact, Int. J. Solids Structures 3,

799 (1967)


