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STABILITY OF POISEUILLE FLOW IN PIPES, ANNULI, AND CHANNELS*

BY

D. D. JOSEPH AND S. CARMI
University of Minnesota

Summary. The value of R = 180 which has been given by Orr [1] as a limit for sure
stability of Hagen-Poiseuille flow is incorrect. A lower value, R = 82.88, can be as-
sociated with an eigenfunction possessing a first mode azimuthal variation (N = 1) and
no streamwise variation. This eigenfunction is obtained as an exact solution of the
appropriate Euler equation. A yet lower value, R = 81.49, is associated with a spiral
mode with N = 1 and wave number a ft! 1. Corresponding results are obtained for
Poiseuille flow between cylinders. For all but the very smallest radius ratios the smallest
eigenvalue of Euler's equation is assumed for the purely azimuthal disturbance. The
mode shape for the pipe flow is consistent with the experimental situation as it is now
understood [2], though the stability limit is much smaller than the experimental value
(R 2100). For the annulus, the variation of the energy limit with the radius ratio
(from pipe flow to channel flow) is consistent with the experimentally observed stability
limit. All the results of the energy analysis hold equally if the pipe is in rigid rotation
about its axis. If the rotation is "fast" linear and energy results nearly coincide.

Consider the arbitrary motion of a viscous fluid governed by the Navier-Stokes
equations. It is known that if the Reynolds number (Re) of this motion satisfies the
inequality

Re < R, (1)
where

— / v • E • v dx
I = Max —^  , (2)
ii v r  / Vv : Vv dx

J -u

v = 0 (x E dV), (3)

div v = 0 (x E 13), (4)

then the motion is asymptotically stable in the mean. Here 13 is a bounded region and

mEti = l'dVi(dI± + iZi\
\dX, dXJ '

Re = md2/v,

where m is a constant, v is the kinematic viscosity, d is the unit of length, V is the velocity
of the basic motion, and v is the difference in the velocity of the basic and disturbed
motions. The region 13 may also be taken as unbounded in directions for which v may

^Received October 2, 1967; revised version received August 16, 1968. Prepared under NSF Grant
GK1838.
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be taken as spatially periodic or nonperiodic but square integrable with square integrable
first derivatives.

Eq. (2) is a consequence of manipulations starting from energy identities of Reynolds
[3]. The variational problem implied by (2) was given explicitly by Orr [1] who solved
the associated Euler equations for the simpler rectilinear viscous motions. A general
formulation of this problem was given for the first time by Serrin [4] and the proof of
the sufficiency of condition (1) is to be found in [5].1

The Euler equations for (2), (3), and (4) are

pE-v = Av — Vp, div v = 0, (5a, b)

v = 01 a-o j (6)
where the quantity p enters as a Lagrange multiplier through the divergence constraint.
The value R of (1) is found as the smallest positive eigenvalue p of the systems (5) and (6).

Orr [1] obtained that version of (5) and (6) which governs the rectilinear motion of a
viscous fluid between plane walls and in tubes, that is, for Poiseuille and Couette flows.
He has also given certain two-dimensional solutions and values p for these problems.
These values have been authoritatively cited as stability limits for sixty years but are
largely incorrect.

The essential defect in Orr's analysis is an unfounded belief in the destabilizing
effects of streamwise disturbances and the suppression of certain transverse modes.
Ironically, the uncritical acceptance of this fallacious argument may well have been
supported by its correctness relative to the Orr-Sommerfeld problem (Squires theorem).

For plane-Couette flow (Joseph [5]) and Hagen-Poiseuille flow lower values of p than
those given by Orr can be associated with modes in which streamwise variations are
suppressed. For Hagen-Poiseuille flow we here obtain the value

P = 81.49, (7)
for a disturbance with a dimensionless wave number a = 1.07 and N = 1. We prove
that R < 82.88 (a = 0 and N = 1) and establish an analytical basis (but not a proof)
for the numerical result

R = 81.49 (8)

The stability of Poiseuille flow in the annulus is taken up in Sec. 7. We first develop
a detailed analysis for the pipe flow.

1. The maximum problem and the Euler equations. Consider the rectilinear motion
•of a viscous fluid down a pipe of uniform circular cross section of radius r0 . The solution
(cylindrical coordinates)

V = (W, V, U) = (0, 0, UM[ 1 - (r*/r0)2]) (9)

is readily obtained from the Navier-Stokes equations. The deformation matrix for this
motion is given by

0 0 1
UMr*E =
mr0

0 0 0

1 o 0
(10a)

'The theorem is a joint result of Joseph and Serrin.
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m = UM/r0 , d = r0 , r = r*/ra , Re = U Mra/v, (10b)

and

pE-v = -priv, , 0, vr), (11)

where

v = (vr , v, , v,) and r = (r, d, z).

The maximum problem (2) makes sense in the unbounded domain when the solutions
are single-valued in 6 and (i) periodic in z or (ii) not periodic in z, but are square in-
tegrate with square integrable derivatives ons £ (- , °°). The periodic solutions can
be represented by normal modes

v(r, e, z) -» u(r, a, N)eiiaz+Nl) (12a)

which are single-valued in 8 when N is an integer. The nonperiodic solutions can be
represented by Fourier transforms

v = E [ u(r,«, A0e<w+a2) da (12b)
N = — 03 J — QO

where

u = 1/47r2 f dz [ " v(r, d,z)ei(Ne+c") dd (12c)
J-co J 0

Similar expressions are used for p(r, 6, z).
Ordinary differential equations for u (of either class) may be obtained from (5) in

the routine way. It is, however, instructive to derive these equations directly from (2)
without introducing the multiplier p. First write the real-valued integrands of (2) as
combinations of complex functions. Then, relative to v of class (12a) or (12b) we seek

where

l/R = Sup (J(v)/D(v)) (13a)

I(v) — [ dz f dd f r2(vrvf + v*v„) dr, (13b)
J-co J 0 J 0

/CO /»2 TT I* 1dz dd rVv : Vv* dr, (13c)
- co Jo Jq

and

Vv : Vv* = dVr\ , I
dr I r2

dvr
dd

2 4- 1^1
| dz

2

+
dVe
dr

2 + i dvt
dd +

+
ldv2

dr + kr dvz
dd

\dv,
I dz r

, I L W , * §Ve _ dvf _ dVr\
r~ \ dd + * dd ' dd ' dd) 114)
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Problem (13a) may be reduced, relative to either (12a) or (12b) to considerations in-
volving the functional IaN(u)/DaN(u) where

/aAr(u) = f r2(wu* + w*u) dr = (rwu*) + (rw*u), (15)
Jo

Daat(u) = -(w, £atTF*) - (v, £nv*) - (u, Lnu*) - 2iN((v*/r, w/r) - (w*/r, v/r)),

= (\Dw\2 + | Dv\2 + |Dw|2 + a2(|w|2 + |i>|s + M2)>

+Klf)+(l^f+M) ■ (i6a'b)
with £jv = (1 /r)D(rD) — (N2 + l)/r2 — a2, £N + (1/r2) = LK — L, D = d/dr, for
solenoidal v satisfying

(l/r)D(rw) + iNv/r -f- iau = 0. (17)

We want to show that for functions of the class (12a) or (12b)

n = Max {Max -j?N . . ^ = Max p~\a, N).
ti a.N L JJaNWJ a tff

Consider functions of the class (12b) and let u' = (u, w). Then by ehmination of v in u
through (17) we have

IaN(u)/DaN(u) = ^aw(u')/a>«w(u')>

the latter quotient being without side constraints.2 Now consider the space of completion
elements u' £ H under the norm (SDaAr(u')1/2 and define the scalar products (u', u")
and [u', u"] corresponding to the quadratic forms

(u', u') = daN(u'), [u', u'] = £)aW(u')-

For fixed u" E H (in fact, for u" G L2) (u', u") = /u.,(u') is a linear functional on H
and by Riesz's Theorem there exists a linear operator A such that (u', u") = [u", A-u']
for every u" G H. The operator A is selfadjoint because SaN is hermitian symmetric.
The operator A is compact because it is the composition of a compact embedding operator
H —> L2 and the bounded operator A carrying L2 —> II, which arises from Riesz's Theorem.
It is known (Riesz-Nagy, [6]) that A has at least one eigenvalue of, at most, finite
multiplicity and the eigenfunctions of A are complete on the invariant subspace of
elements u' £ H such that [u', A-u'] 5^ 0. All of the nonzero eigenvalues of A may be
obtained from extremum problems. (A is not a positive operator because 3aN(u') is
an indefinite quadratic form.) In particular, if there exists at least one u'Gff (which we
verify, a posteriori) such that SaN(\x') > 0 then the largest eigenvalue of A is positive and

0 < p~\a, N) = Max 0aiV(u'), S„iv(u') = 1.
u'EH

This characterization, and the existence of maximizing element u' is guaranteed so long-
as the elimination of v (or u for N = 0 from u through (17) can be carried through, that
is, for each pair of finite values (a, N) ^ (0, 0). Lemmas 1 and 2, to be proved below,

2When N = 0 the smallest values of DaN are necessarily found among the u such that v = 0. Then we
use (17) to eliminate u.
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guarantee that the largest of the values p~'(a, N) over — < a, N < °° are found
for finite (a, N) 9^ (0, 0).

For any v of the nonperiodic class we have from (12b) that

= { Z) f (S0«Jv(u')^«J\r(u')/©«Ar(u')) daj/jE / £W(u') da

< Max {Max = Max p~\a, N).
a,N Vu'SH 3J«At(U )) a,N

(This relation is a trivial modification of a lemma of Velte [7].) On the other hand, for
the maximizing element u' = u'(r, a, N) we have, using (12c), that

■a t -v ~\t\ 3„*(&') I*n(u) /(v) ^ 1Max P (a, iVJ = — 7^77 = T: 7ZT = T^/~\ S T»*
a,N 2)aiv(u ) DaN(u) -D(v) i?

The last two inequalities can hold only if

1 /R = Max P~\a, N).
a ,N

Given what has been said about the existence of functions u' £ H and finite values
(a, N) 9^ (0, 0) which solve the maximum problems, this last result also holds relative to
periodic functions of class (12a).

In the analysis carried out below we shall assume, but do not prove, that elements u'
which solve the maximum problem are regular solutions of the Euler equations (5).
Relative to (12a) or (12b) we have (after eliminating p)

prw = —Lnu + (ar/N)£Nv + 2 ia(w/r), (18a)

pru — —£nw + 2 D(w/r) — (i/N)[D(r£ Nv) — (2 N2/r2)v], (18b)

D(wr) + iNv + iaru — 0, (18c)

u, v, w — 0 © r = 1, (18d)

u, v, w are bounded at r = 0. (18e)

These are also Euler equations for the eigenvalues

l/p(a, N) = IaN(u)/DaN(u) = 6r„jv(u/)/®aA'(u') (19)

over u satisfying (18c) and (18d) or u' satisfying only (lSd) (and bounded in norm).
The Euler equations (18a, b) are obtained as the coefficients of Su* Sw* after expressing
the dependence of 8v* on the independent variations through the continuity equation
(18c). Direct elimination of the side constraint is a procedure alternate to the introduc-
tion of Lagrange multipliers in the calculus of variations. The direct procedure leads
to an unsymmetrical form of Euler's equations which are natural to the problem and
are not readily suggested from the symmetric form of Euler's equations which comes
out of multiplier procedures.

In this way we have reduced the problem of stability to the study of the

2. Eigenvalues p(a, N). It is convenient to relax the requirement that N take
on only integer values and to consider continuous N. Then the stability limit R is
contained in that subset of the surface p(a, N) belonging to integer values N.
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Our first result guarantees that there exists a supremum, independent of a and N
for the values p_1 and establishes that p —» co as a + iV2 —» °°.

Lemma 1. Let a and N be nonnegative real numbers and let p(a, N) be any eigenvalue
oj (18). Then

\/p(a, N) < 1 /(X + N2 + a — 2a) (20)

where X1/2 = 2.405 is the first zero of <70(X1/2).

In Lemma 3 we show it is sufficient for all a and N to consider only nonnegative values.
Proof. The inequalities

°^1' (21)

|(ruw*) db (ru*w)\ < (r \u\2) + (r |^|2),
and

(\D<p\2) > X (k2|) (22)
for <p satisfying (18d, e), are used in the proof. We start with an estimate of DaN from
below.

DaN = <1 Dw\2 + \Dv\2 + \Du\2 + a2(|w|2 + M2 + \u\2) + N2 \u/r\2)

+ <|Nw + iv\2/r2 + \Nv - iw\2/r2) > (X + a2)(M2> + (X + a2 + N2)(\u\2)

+ <|Nw + iv\2 + |Nv - iw|2) > (X + a2 + N2 + l)<|w]2)

+ (X + a2 + iV2)<M2> - 2iN((v*, w) - (v, w*)). (23a, b, c)

Multiply (18c) by rw*, add this to its complex conjugate and integrate to produce
the relation

iN[(vw*) — (u*u>)] + ia[(ruw*) — (ru*w)\ = 0. (24a)
Then

iN((vw*) — (v*w)) = —ia((ruw*) — (ru*w))

> —a(r |w|2) — a(r |w|2). (24b)

Eqs. (23c) and (24b) are combined to produce the estimate

DaN > (X + a2 + N2 + 1 - 2a)(r \w\2) + (X + a2 + N2 - 2a)(r |w|2)

> (X + a2 + AT2 - 2a) {<r M2> + (r |^|2)}.

On the other hand Iaff < (r |w|2) + (r |w|2) and Lemma 1 follows.
Our next result establishes that p —> as a' + N'2 —> 0.

Lemma 2. Let p(a, N) be any eigenvalue of (18). Then
(I + —11 Y/2 (25)
\X2 + 2\(N - l)2/ ' (-' '

1 < 23/2

P(a, N) - (X + 1) ' Vx2 1 2\(N - l)2

Proof. Again estimate DaN from below

D<xn > <|D«r> + (-^2 + l)(|w/r|2 + |v/rj2) — 2iN((v*/r, w/r) — (w*/r, v/r))

> (\Du\2) + (N - l)2(|w/r|2 + |f/r|2)

> X(|M]2) + (N - l)2<|t-A|2). (26)
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For IaN we use Schwarz's inequality

IaN < 2«r \u\2)(r \w\2))1/2 < 2((|M|2)(|W|2»1/2. (27)

It is easily established from Eq. (18c) that

(| Dw\2) + (\iv/r\2) = <| Nv/r + au\2)

which leads to the estimate

(X + l)(|u-|2) < 2q:2(|m|2) + 2iV2(|y/r|2). (28)

The estimates (27) and (28) are combined into
-)3/2

/«, < (x + iy/-2 l«2(k|2)2 + N2(\u\2) (29)

Now combine (26) and (29) to produce

hit < 23/2 ( «(\u\y + N2(\u\2)(\v/r\2) V"
Daff - (X + 1)1/2 \(X<|m|2) + (N - l)\\v/r\2))2/

->3/2

— I 1 \ 1/2 I x 2 "t"
N2

(X + 1)1/2 VX2 1 2\(N - 1)'

proving Lemma 2.
Now introduce polar coordinates in wave number space

a = d sin <p, N = d cos <p, d = (a2 + N2)1/2. (30a, b, c)

We have established that along any ray <p — const there exists a finite nonzero value of
d on which p-1 is a maximum. Let p'\a, N) = n (d, <p). Let d = d(ip) be that value of d
for which the relation

p'1 = U(<p) = n(d(<p), <p) = Max n(d, <p) (31)
d> 0

holds.
We next establish a result which allows us to restrict the search for the value R

to the first quadrant <p GE [0, ir/2] and also shows that <p = 0 and <f> = ir/2 are locally
extremes of the curve

Lemma 3. p(a, N) is an even junction of a and N.

Prooj. From (19) it is obvious that p is real-valued. If u, v, and w are eigenfunctions
belonging to p so too are u*, v* and w* eigenfunctions of p.

First we prove symmetry with respect to N. We note that Eqs. (18) unaltered under
the transformation

w(r, a, N) —w{r, a, —N)

v(r, a, N) —> v(r, a, —N) (32)

u(r, a, N) —u(r, a, —N).

These new functions are then eigenfunctions of the same value p. That this is the value
p{a, —N) follows upon insertion of the transformation into (19). With respect to a
symmetry we have invariance for (18) under
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w(r, a, N) —w*(r, —a, N)

v(r, a, N) —» v*(r, —a, N) (33)

u(r, a, N) —u*(r, —a, N).

That p(a, N) = p(—a, N) follows from this transformation and (19). This proves
Lemma 3.

It is clear that all of the values of p~1(a, N) = n(d, <p) are to be found in the first
quadrant <p £ [0, tt/2], By Lemmas 1 and 2 we know that a maximum value p-1 =
p(<p) = fx(d(<p), <p) for 0 < d(ip) < 0°, exists. The value d(<p) is then a root of

(dn/dd)d.d |y) = 0. (34)

These maximum values p form a line of mountain tops depending on the angle <p. On this
line, by the chain rule and (34)

dp _ dji d(d) dfj. _ djj.   1 fapAf_ip "1
d<p dd d<p + dv dv p2 Ida dNa]' { >

Then, from the symmetries of p,

dp/dtp (<p = x/2) = 0, dp/dip (<p = 0) = 0. (36a, b)
It follows that <p = 7r/2 and <p = 0 are extremes of p(<p) = p-1. Orr has found that pi.tr/2) —
(180)-1. We find that ju(d(0), 0) = p(0) — (82.54)"1 where d(0) = 1.13. Of course, the
stability limit necessarily occurs among integers N. For N = 1 we have ju(l, 0) = (82.88)"1.
It turns out that this value is a local minimum and that the true maximizing value is
associated with a third stationary point a = 1.07, N = 1, <p x/4.

In the work which follows it is convenient to introduce the variable f — wr. It is
also convenient to work with the pair of differential equations

pN2f = iarDLj - (N2 + a.V)Lu - 2a2rDu, (37a)

p[(7V2 + ar2)u + iarDf] = L2j + 4 iaLu, (37b)

and boundary conditions

/ = Df = u = 0 at r = 1, /, u bounded at r = 0, (37c)

which are equivalent to the set (18). To derive the set (37) from (18), substitute / in (18),
then eliminate v with (18c) and rearrange to produce

PN2j = iarDLj - (N2 + aV)Lu - 2a2rDu, (38a)

PN2u - (a2Lf + 2ia3u + iarDLu) = L2/ + 4iaLu. (38b)

The first of these equations is identical to (37a). To obtain (37b) differentiate (38a)
once, multiply the result by iar/N2 and add to (38b) multiplied by a2r2/N2. This leads to

p (iarDf + a2r2u) = — (a2L] + 2 iau + iarDLu). (39)

Eq. (37b) then follows from substituting (39) into (38b).
3. Eigenvalues p(a, 0)-0rr's problem. Orr solves (37a), (37b) and (37c) when

N = 0. Then, whether or not v is set to zero we have from (18c)

Df = —iaru. (40)
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Eq. (40) reduces (37a) to an identity and leads through (37b) to

L2f - 4L{Dj/r) = 2iaprDf, (41)
which can be re-expressed

3l)2/ = 2 iaprDj, (41a)

where £> = D2 — (1 /r)D — a. The values

180 ̂  Min p(a, 0), a ~ 3.7, (42)
a

have been obtained from (37c) and (41a) by Orr. These values compare with the values

180.6 = Min p(«, 0), a = 3.6, (43)
a

which are obtained by numerical integration. There is a difficulty, associated with the
singular coefficients of (41a), in using the efficient Runge-Kutta-Gill forward integration
procedure. This difficulty we overcome by starting the integration from values of the
solution known near the origin through Frobenius expansions. An account of this method
is included as an appendix to this paper. Orr has used the Frobenius expansions to
represent the solution everywhere in r £ [0, 1] and the remarkably accurate values
of (42) are obtained from estimates of these solutions and hand calculations.

The value p = 180.6 cannot be the minimum eigenvalue for (37a), (37b) and (37c)
because

p(0, 1) = 82.88. (44)

To demonstrate this we now consider the

4. Eigenvalues p(0, N). When a = 0 we have the relatively simple real system

L2/ - PN2u = 0, (45)

Lu + Pf = 0, (46)

1 N2L — ~ D(rD) - Jr ,r r

f = Df = u = 0 at r = 1, /, u bounded at r = 0. (47)

It is convenient at this point to reformulate (45), (46) and (47) as an integral equation.
For this purpose we use the Green's functions for

LG = 0, r E (0, 1), r r0 ,

G(r, r0 ; N) = G(r0 , r, N),

DG(r0 + , r„ ; TV) - DG{r0 , r„ - ; N) = - 1/r, (48)

G( 1, r0 ; N) = 0,

(?(0, r0 ; N) bounded,

and for
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L2H = 0, r £ (0, 1), r ra ,

H(r, r0 ; N) = H(r0 , r; N),

DH(r0 + , r0 ; N) = DH(r0 , r0 - ; AT),

7)277(r„ + , r0 ; 2V) = D2H(r0 , r0 - ; N),

D3H(r0 + , r0 ; N) - D3H(r0 , r0 - ; N) = - 1/r, (49)

7/(1, r0 ; N) = 0,

Z)^(l, r0 ; N) = 0,

7/(0, r0 ; iV) bounded,

which are given by

G = -(l/2tf){(rr0)* - (r0/r)N\, r > r0 , (50)

and

H = (1/8A7(7V2 - 1)) {(N - 1 )(rr0)V[Nr20 - (N + 1)]

+ (JV + 1)M"[(1 - iV)r20 + N] - (N + l)(r0/r)V

+ (N - l)(r0/r)Nrl\, r > r0 . (51)

It can be verified by inspection3 of (50) and (51) that

G(r, r0 ;N) > 0, r, r0 £ (0, 1), (52)

H(r, r0 ; N) < 0, r, r0 £ (0, 1). (53)

To obtain an integral equation for / we first re-express (45), (46) and (47) with (50)
and (51). Thus

u = p [ G(r, r0 ; N)f(r0) dr0 , (54)
Jo

/ = - pN2 f H(r,r0 ; N)u(rQ) dr0 . (55)
*'0

/(r; N) = p2 f Kir, r0 ; 2V)/(r„ , N) dr0 ,

and

This leads to

(56)

where

K(r, r0 ; N) = —N2 f 77(r, r; N)G(r, r0 ; N) dr. (57)

From (52), (53) and (57) it follows that

K(r, r„ ; N) > 0, r, r0 £ (0, 1). (58)

3This result is true also for the more general operator
L = a(r)D2 + b(r)D + c(r), with a > 0, c < 0.

(see Kirchgiissner [8]).
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We have now established elements preliminary to a proof of

Lemma 4. There exists for each fixed N a positive least eigenvalue p2 of (56). This
eigenvalue is simple. The associated eigenjunction f is -positive in (0, 1). The eigenfunction u
belonging to p = + (p2)1/2 is positive. There are no other positive solutions of (45), (46) and
(47) belonging to p > 0.

Proof. (56) is an integral equation with a positive kernel. A theorem of Jentzsch
[9] applies to such integral equations and guarantees the simplicity of p2 and the positivity
of f. The positivity of u follows by inspection of (54) and (52). There is not a second set
of positive eigenfunction /2 , u2 belonging to another eigenvalue p2 > 0. Assume the
contrary. Then, from the equations

L3ft + pIN% = 0, L3f2 + PIN2U = 0,
we obtain in the usual way

P\{L2u , U) = p\{L2u , U) = p\{L2U , U).

The last equality following the property selfadjointness for functions which vanish
along with their first derivative at r = 1. Since by (45) Iff, is positive in (0, 1) and since
/2 is positive in (0, 1) by hypothesis we are led to the contradiction p2 = Pi • This proves
the lemma.

We next obtain these unique positive solutions and calculate the smallest values of
p(0, N) > 0. It is easiest to start from the system

L3f + P2N2f = 0,

j = Df = L2f = 0 at r — 1, (59)
f bounded at r = 0.

Then we note that Bessel's function <p = ./A.((X)1/2r) satisfies the equations

Lip = — \<p,

lV = xV,
T 3 \ 3±j <p = — A <p,

and is bounded at the origin. The linear combination

/ = AJN{\\/2r) + A2JN(\\,2r) + A*2JN(\\/2r), (60)

is the general solution of (59) provided that

Xj = (p2N2)1/3, X2 = X1e-i<2/3>T, X3 = \eiW3)\ (61)

and that

= 0, (62)

JN{W/2) J»{ a2/2) Jn{\T)

F(p, N) = \[/2DJn(\Y2) \Y2djn{\Y2) \Y2DJn(\Y2)

x?^(o x2j„(xn \Un(\y2)
where F(p, N) is the determinant of coefficients of Ai , A2 and A% in the linear equations
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formed from (60) and /(1) = Dj{ 1) = L2/( 1) = 0. We can rewrite (62) as

8(p, N) = = JN(a)JN(ae-i*/a)JN((u>r/3)

jPJN(a) DJN(ae~'*/3) DJJae"/3) \
'I JN(a) + e-*i/3J„(ae-ir/3) + J'"Mae*")) ' { '

where a = X}/2.
Our problem is now reduced to an investigation of the roots p of (63). We proceed

as follows: g(p, N) is a real function of complex argument. For each fixed N = 1, 2, 3 • ■ •
we seek the smallest positive root of g(p, N) = 0. We then verify that the corresponding
eigenfunctions / and u are positive. Lemma 4 then guarantees that this least root of
8(p, N) = 0 is also the smallest of the eigenvalues p(0, N) of (45), (46) and (47). The
results which follow were calculated from the Bessel's functions and checked against
direct forward integration of (45), (46) and (47) by the Runge-Kutta-Gill method

TABLE I
Principal eigenvalues of p(0, N) of (45), (46) and (47). These eigenvalues are found as the smallest roots,

for preassigned N, of Eq. (63). Only integer values of N correspond to accepatble (single-valued) solutions.

N

0.5
1
1.13
2
3
4
5
6

P(0, N)

98.55
82.88
82.54
91.04

110.19
134.03
161.27
191.44

and are in perfect agreement (see Appendix). The graph of / and u for N = 1 is given
in Fig. 1. For TV = 1, the coefficients for (60) are

Al = 1, A, = 0.00301 - i0.02455.

6. Perturbation of the eigenvalues p(0, N). At an early stage of this investigation
we conjectured that the value 82.88 was the smallest of the values p(a, N) for integers N.
The basis for such a conjecture is this. The value 82.88 is the smallest value for integer
N of the eigenvalues p(0, N). This value is a local extremum. For large a and any fixed
N it is known from Lemma 1 that p is large. In fact, it is to be expected that for any fixed
N the eigenvalues p(a, N) —> p(a, 0) as a —> (Orr's solution is the limiting a —> ®
solution for any N). For fixed N the local extremum at a = 0 could be an absolute
minimum but could not be an absolute maximum. An even stronger argument, of the
same kind, has been given in Sec. 2. From that argument we know that on each ray ip =
tan"1 N/a there exists a minimum value of p = p(cl(<p), <p) for 0 < d = (a2 + iV2)1/2 < .
The intersection of the line d(<p) of minimum values with the a = 0 and N = 0 axes
locates local extreme points of p on the line of minimum values d(<p) and, on this line,
p(a, 0) > p(0, N). Tj the variation were mono tonic p( 0, N) would be globally minimum.
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08 10

Fig. 1. Principal eigenfunction f(r, 1), u(r, 1) of Eqs. (45), (46), and (47).

Moreover, our extended calculations for the annulus (Sec. 8) show that among integers
N the minimizing solutions are purely azimuthal (transverse to the main stream) for
radius ratios as small as 10~\ For the plane Couette flow this result has been obtained
numerically (Busse [10]). It is consistent with the results of Serrin [4] for Couette flow
between cylinders when the gap is narrow, and when the gap is large [11] and is can be
proved for plane Couette flow [5].

But the conjecture is false, and p(0, N) cannot be the smallest of the values p(a, N)
for all (continuous) N 0. It is known from Orr's calculations and from ours that over
a the Min p(a, 0) = p(3.6, 0) = 180.6, and p(a, 0) —> °° as a —* 0. Now consider p(a, N)
for very small continuous N = «. It is known that eigenvalues exist for e ^ 0, a = 0
so that, by Lemma 2, p(0, e) can be made arbitrarily large by decreasing «. By Orr's
calculation p(3.6, 0) = 180.6 and, by continuity p(3.6, e) = 180.6. For small N = e,
then, p(a, e) decreases as a is increased from 0 to 3.6. Since 3p(0, t)/da = 0, it is to be
expected that d2p(0, t)/da < 0. This expectation is correct, it turns out, but the true
situation is a delicate one; p(0, N) changes from a local maximum (on the curve N =
const) to a local minimum as N is increased from N = 1 to N = 2.

In the lemma which follows the results of the a perturbation of the exact solution of
Sec. 4 are summarized. We use the notation gM = d"g/da\a.0 for any C' function of
d and consider solutions /(r, a, N), u(r, a, N) and p(a, N) of Eqs. (37).

Lemma 5. Eqs. (37) are uniquely solvable when a = 0 (Lemma 4). The unique solu-
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tion is (see Sec. 4)

Kr, 0, N) = £ AtJN(\\/2r), u(r, 0, AO = P Z A^J^xY'r)
i = 1 t = 1

where the are chosen so as to satisfy (37c) and

(f) + (u2) = 1.

There is a unique a analytic branch of (37) passing through a = 0 .On this branch

fl\r, 0, N) - r2)JN(\)/2r), (64a)

un\r, 0(JV)=^t -4,- {X,-(l - r2)JN(\)/2r) - 8JA.(X*/2r) + 2rDJ„(\)/2r)}, (64b)

p(1)(0, N) = 0, (65a)

and

p,2,(0, iV) = K^2 + 2)(u2) + N~\r\Lf)2) + (4iV"2 - 1)(/, Lj) - G2}/N\uf)
where

— G2 = ((L/(U)2) - iV>(1), Lm(,)) - 2iplVV1'/"') < 0. (65b)

The equations of the lemma permit the calculation of the values p<2)(0, iV) given in
Table II. Eq. (65a) already suggests that p<2) > 0 when N > 2, (for if iV > 2, then

TABLE II
Second derivatives with respect to a of the eigenvalues p(a, N) for fixed N at a =0. These derivatives are

exact values which are obtained from equations of the lemma. At a = 0, p(1)(0, N) = 0 for all N. The eigen-
values p(0, N) are locally maximum when N > 1.21 and locally minimum when N < 1.20 (c/. Fig. 2).

N p°K0,N)
0.5 -167.687
1 - 4.429
1.13 - 1.575
1.2 - 0.503
1.4 1.541
2 3.782
3 4.383
4 4.346
5 4.222
6 4.096

(4AT2 - 1)</, Lf) = — (4iV~2 - l)J<(Z>/2)> + <(//r)2)} > 0).
The existence of a unique a analytic perturbation for (37) at a — 0 is a consequence

of the simplicity of the principal eigenvalue (Lemma 4) and Rellich's Theorem (see
Ivato [12], Chap. 7, for a complete discussion and the relevant references). We calculate
the first few a derivatives.

Write Eqs. (37a) and (37b) in matrix notation

Aq = aB-q (66)
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where

q =

and

A = L2 -PN2

i-pN2 -N2L

B =

We make use of the identity

iprD (par2 — 4 iL)

'{_—irDL a(r2L + 2 rD),

LirDj) a 2Lf + rDLj, (67)

and the relations L(1> = 0 (L<2) = —2), and LU = — pj which hold when a = 0 to find
after an integration by parts that

(q, B-q) = i\P(jrDj) ~ (urD(Lj)) - 4(JLU)} = 0,
when a = 0.

By direct differentiation of (66) we have for a = 0

A-q = 0, (68a)
A-q(1) = —Aa'-q + B-q, (68b)

and

A-q<2) = — A<2) -q + 2B(1) -q + 2B-q(1) - 2A(U -q"', (68c)

where q, q(I> and q(2) all satisfy the same boundary conditions. The a symmetry of p
implies that A(I) = 0. This result is also implied by the orthogonality condition which
must be imposed on the right of (68b), 0 = (qa), A-q) = (q, A-qa>) = — (q, A(1)-q),
Unfolding of the last scalar product gives p(1> = 0.

Similarly, for the right side of (68c) we have

0 = <q(2>, A-q) = (q, A-q'2')

= — (q, A<2) -q) + 2(q, B(1) -q) + 2(q, B-qll)). (69)

The relations

and

(q> B(1>-q) = —2 (u2), (70)

<q, A<2> -q) = —4</; Lj) - 2PwN\uj) + 2N\u2), (71)

follow from straightforward calculations. Eqs. (69), (70), and (71) are used to deduce
(65), but we must first transform the last term of (69). Consider

(q> B-q(1>) + (q{1>, B-q)

= i{p(jrDjw) + P{jwrDj) - (Lu, rDjm) - (Luw,rDj) - 2(fLuw) - 2(fmLu)}.

In the above eliminate Lu (= —pj) and Lua) (= — p/(1) + iN~2rD(Lj)) and integrate
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by parts to continue the last equation as

= N-2{(rDLj,rDj) + 2<J,rDLf)},

= -AT2{<r2(L/)2> + (4 + N2)(fLf}}.

Finally, using (68b), one finds that

(q, B-q'1') = —(qn), A-qm> - N~2{{r\Ljf) + (4 + N2)(l Lf)\. (72)

Here, qm = iq1 where q' is real and (q', A-q') = G'\ Eqs. (69-72) are now combined
to form (65a).

To prove the variational inequality (65b) note that

2N2(u'j') 1
<(L/7> - N2{u'Lu') ~ P

for any admissible /' and u' with equality holding for v! = u, f = /. In matrix notation
(q', A-q') > 0 for any admissible q'. The vector qn)/i is admissible, proving (65b).

It may be readily verified that the functions given by (64a, b) reduce Eq. (68b)
(with A(1> = 0) to an identity. Moreover, this solution satisfies the boundary conditions
at r = 1 and is bounded at r = 0. The solution is unique on the subspace orthogonal
to the solution of the homogeneous problem. This subspace is already implied for solu-
tions of (37) of norm (q(a) -q(a)) = 1. The lemma is proved.

Theorem. R < 82.88.

This is obviously true since p(0, 1) = 82.88, pa)(0, 1) = 0 and p<2)(0, 1) < 0.
The value R = p(1.07, 1) = 81.49 is a result of the Runge-Kutta integration of

Eq. (37). The integration is started with values of independent solutions /a = rN, f2 = r'f+2,
w, = rN given by a Frobenius analysis at the origin. The graphs of p(a, N), for several
N are given in Fig. 2.

7. Axial flow in an annulus. The basic velocity profile governing the rectilinear
motion of a viscous fluid down an annulus with inner radius rx and outer radius r„ is given
by

v

where

= (IF, V, V) - (o, 0, ■

r = r*/d, d = r0 — r, , i7 = r,/r0 , r] = (y2 — l)/ln ??2.

The deformation matrix for this motion is given by

0 0 1

E = -g(r; ri)r 0 0 0
1 0 0

where

( \ _ [(1 ~ vf - r2c/r2]
9(r> V) ~ j _ + r2 ln "
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Fig. 2. Principal eigenvalues p(«, N) of Eqs. (37). The figure summarizes the results of a numerical
integration of the equations. The p(0, N) and p (2)(0, N) are obtained by exact analysis and are summarized
in Tables I and II. The smallest of values p(a, N) is 81.49. For each fixed N the values p(a, N) —» p(a, 0)
as a —> (Orr's solution).

Therefore

pE-v = -pgr{v, , 0, vr),

where v = (vr , ve , v2) and r = (r, 6, z) and p = UMd/v. The Euler equations for this
problem are (18a) and (18b) with p replaced by pg(r, rj). To derive these equations one
need only verify that the derivation of (18a) and (18b) given in Sec. 1 may be reproduced
with pg(r\ rj) instead of p. One can also, by following the derivation of (37), arrive at
the pair of equations

PgN2f = iarDLj - (N2 + aY)Lu - 2o?rDu, (73a)

pg[(N2 + ar2)u + iarDf] + iapDgrj = L2/ + 4 iaLu, (73b)
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and boundary conditions

f = Df = u = 0 at r — 77/(1 — 77) and r = 1/(1 — rj). (73c)

The eigenvalues p(a, N; y) of (67) are also characterized by obvious analogues of Lemmas
1, 2, and 3. For a = 0 we are led, as before, to the system

L2/ - pgN2u = 0, (74a)

Lu + pgj = 0, (74b)

L = (1 /r)D(rD) - N2/r2,

/ = Df = u = 0 at r = 77/(1 — 77) and r = 1/(1 — 77), (74c)

but since g is not of one sign on [77/(1 — 77), 1/(1 — 77)] Lemma 4 does not hold in the
annulus. The form of g is such that it is not possible that the solution of the system (74)
can be obtained in terms of a finite number of Bessel functions. It is possible, however,
to construct a perturbation from this system and, in particular, Eqs. (65) hold with

ri/d-i)

<«> = /•> v
ar dr

and (uj) and (wa,/a>) replaced by (guf) and (guwj(1)), respectively. The result p(1)
(0, A7"; 77) =0 holds for all fixed N and 77 and the argument which leads to exclusion of a
completely transverse minimizing solution for small fixed N, holds here also. The main
difference is that for the annulus the minimizing solution over integers N is such that
N >2 when 77 > 10"4.

The outcome of the numerical integration of Eqs. (73) is given in Table III. Evidently
the solution does reduce to the pipe flow, but even for very small radius ratios (17 > 10~4)

TABLE III
Critical Reynolds numbers for Poiseuille flow in an annular pope. The eigenvalue p(0, R-, ij) tends toward

the pipe value 82.88 as 77 is decreased. For 77 > 10~4 the smallest value of p(a, N, 77) over N and a, p(a, R, 77)
is associated with purely azimuthal solutions (a = 0). Starred values in the table mean that the search for
minimum values was carried out relative to continuous N. The value 99.21 holds for 17 = 1 (nearly) (plane
Poiseuille flow) and has been obtained independently, and first, by Busse [10]. The integer values of N in
this table are offered as hypotheses for experiments.

V P a St
0.0001 83.80 0 1.8*
0.001 85.10 0 1.8*
0.01 93.23 0 1.9*
0.05 98.02 0 2
0.20 100.35 0 3
0.50 99.63 0 6
0.70 99.43 0 12
0.90 99.21 0 39

the N = 1 solution is not yet minimizing. In keeping with our remarks relative to the
version of Eqs. (65) which hold for the annulus, p{a, 1, 1(T3) is a local maximum when
a = 0, but p(a, 2, 10~3) is a local minimum when a. = 0 (see Fig. 3).

In Fig. 4 we have plotted the variation of the stability limit with radius ratio. The
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top curve represents the trend of the experiments [17]. The bottom curve is the energy
limit. Though the values of the limits differ by an order of magnitude, their variation
with the domain is remarkably similar. The linear theory, on the other hand, bears
no resemblance to experiments. For the linear theory the critical Reynolds number,
Um^(b — a)/v, tends to <*> when rj = 0 (pipe flow), to 10,600 when 17 = 1 (channel flow)
and the variation is monotonic in between [17].

8. Rigid rotation around the pipe axis. All of the results of the previous 7 sections
hold relative to a pipe which rotates as a rigid body around its symmetry axis. For the
rigidly rotating system the field V = (0, Or, U(r)) with constant angular velocity fi,
is an exact solution of the Navier-Stokes equations. The constant vorticity 20 does not
enter into the rate of strain matrix E, into the boundary conditions on the difference
motion or into the fundamental problem (2), (3) and (4). It follows that all of our results
hold relative to the O family of rotating Poiseuille flows.

In contrast, Pedley [16] has shown that the linear limit is very sensitive to rigid
rotations. In fact the result of his formal perturbation analysis (powers of e — Um!^/ttr0)
in the limit e —> 0 is exactly the solution of the energy problem when a = 0, that is

20Q

P 120-

ct
Fig. 3. Principal eigenvalues p(a, N; q) for the annulus with radius ratio 77 = 10-3. The smallest
eigenvalue among integer N is p(0, 2; 10"3) and it is minimum at a =0. The eigenvalue p(0, 1; 10-3)

is a local maximum at a =0.
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R = 82.88, N = 1 and a = 0. Pedley speaks of a flow with components (0, S2r(l + 0(e2)),
1 — r~ + 0(e)), but it is not hard to show his result holds rigorously for the flow (0,
Or, 1 — r2) in the limit —> co, = const.4 This quite remarkable coincidence (inde-
pendently derived) does not quite rule out sublinear solutions in rapidly rotating pipes
(for the energy limit is 81.49 and a/0) but evidently does rule them out in an annular
pipe (?7 > 1CT4) with velocity components (0, 12, 1 — r2) where the inner cylinder moves
forward with velocity 1 — t;2.5 This is the second of the such strong stability results
(giving both necessary and sufficient conditions for stability) for rotating shear flows.
F. Busse (private communication) has shown that the energy value R = 82.6 is neces-
sary as well as sufficient [5] for the stability of plane Couette flow which rotates as a
rigid body in several different ways one of which involves only finite rotation rates.

9. Concluding remarks. To conclude the energy analysis of the stability (and
uniqueness) of Hagen-Poiseuille flow it is necessary to determine the smallest eigenvalue
R — p of Euler's partial differential Eqs. (5) and (6). Our results fall somewhat short of
this goal. We have proved that R < 82.88. The value R = p(1.07,l) = 81.49 is a numerical
result but is not without a strong analytical foundation. We believe that this is the
correct stability-uniqueness limit for (5) and (6).

The stability problem associated with Hagen-Poiseuille flow is in a sense a starting
point for stability theory, The first systematic reports of transition are to be found
in the celebrated paper of Reynolds [3] and it is in these experiments with round pipes
that the "Reynolds number" criterion has its roots. For nearly a century the transition
mechanism and an associated quantitative criterion have eluded exact mathematical
analysis. Linear theory (as far as its result is known) gives stability at all Reynolds
numbers even to nonaxisymmetric disturbances (Salwen and Grosch [13]; Lessen,
Sadler and Liu [14], The linear theory is not totally at variance with experiment (Leite
[15] and [14]). If care is taken to keep extraneous disturbances small enough the transi-
tion Reynolds number can be made very large. Presumably, truly infinitesimal dis-
turbances would never amplify. Reynolds [3] himself had no confidence in the ability
of linear theory to explain his transition observations and notes that the abruptness
of the transition "at once suggested the idea that the condition might be one of instability
for disturbances of a certain magnitude, and stable for smaller disturbances."

The linear theory fails also for the natural instabilities of the Poiseuille flows in
annular spaces. This is abundantly clear when t] = 0 (pipes) but it is also true when rj = 1
(channels) and is increasingly true for the small 17 in between. It is true that Lin's [21]
number 10,600 is relatively closer to the experimental 2000 than the 99.20 of energy
theory. Neither value accurately mirrors experiments and this is not surprising. The
linear limit is taken on in a class of disturbances narrower than true solutions and it
can be radical (but not conservative) relative to experiments. The energy limit is taken
on in a class of disturbances wider than true solutions and it can be conservative (but
not radical) relative to experiments.

One cannot know, a priori, whether energy or linear solutions will more faithfully
reflect certain features of the nonlinear hydrodynamics. Figure 4 suggests that the energy

4To do this we show that Euler's equation [5] and the linear perturbation equations (written in the
rigid body coordinates) differ at fixed R when a —» 0 and aft = const, by the gradient of scalar field.
The linear eigenvalue i?(ft) tends to 82.88 as ft —> co.

6To establish this one needs to show that the lowest of the values p(a, N; 17) occurs in the set a = 0.
Numerical analysis shows this is true when > 10-4.
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1900

(a) Experimental values giving the transition point for the breakdown of Poiseuille flow in annuli. The
points were compiled by R. Hanks [16] and the relevant experiments are listed in his paper. The points
with white interiors are presumably less reliable than the black ones. The curve is an interpolation formula
devised by Hanks. We have left his curve on the figure to show the trend of the experimental results.

(b) Energy stability limit as a function of the radius ratio. The points on the curve are stability limits
(numerical). The stability limit occurs among integers N and the true curve has discontinuous first
derivatives. The curve shown is a smooth representation of the true curve. The last five entries of Table
III are stability limits and for these R = p. For 17 = 0, R = p(1.07, 1) = 81.49. For t) = 10~4, R =
p(0, 2) = 88.75. For r, = 0.01, R = p{0, 2) = 93.31. For v = 1, R = 99.20.

Fig. 4.

limit may retain more of the physics than the linear limit. The variation of the linear
limit with 17 seems to have nothing in common with experiments [18]. On the other hand the
experimental and energy limits are alike with regard to their variation with rj. This
resemblance may, however, be fortuitous and a critical experimental test of the relevance
of energy eigenfunctions can be found in the "predicted" dramatic variation of the
azimuthal periodicity (iV(j?)) with 17 (Table III).

The factor of about 20 which separates the energy and experimental limits is not
to be denied: neither should it be overemphasized. In the "fast" rotation limit even this
difference must vanish, nearly.

Ordinarily, however, one cannot expect detailed agreement between the result of
energy analysis and the true nonlinear hydrodynamics. For this to hold, it would be
sufficient that the Euler problem for the energy functional and the linearized hydro-
dynamic stability problem coincide (as for the Benard problem and some rotating shear
flows [5]). For parallel motions (with S2 = 0) we have no such coincidence and the solutions
of the Euler equations quite clearly cannot reduce the linearized stability problem to an
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identity. Moreover, when there is not such coincidence, nonenergy integral constraints
(vorticity integrals, moments of various kinds, etc.) on the hydrodynamic solutions
will not hold relative to the solutions of Euler's equations. For example, the extremal
solution for Poiseuille flow in annuli (for rj > 10"4) are found in a class of two dimensional
solutions which do not include possible amplified or neutral solutions of the hydrodynamic
problem [19].

What then is the physical content of solutions of the Euler problem? Of all the
kinematically possible difference motions (these are solenoidal, and satisfy the boundary
conditions) the ones which extremalize the eigenvalues of Euler's equations are also
most efficient in converting the energy of the basic motion into energy of the difference
motion. Such energetically efficient fields are not always dynamically possible. But
the energetically efficient component of true hydrodynamic fields are quite possibly
most relevant for instability. It is in this context that we note that the three central
experimentally observed features of the most destabilizing disturbance for pipe flow [2],
the spiral mode, the first mode (N = 1) azimuthal periodicity, and the finite amplitude
of the disturbance, as well as the domain dependence of the experimental transition
limits in annuli, are all inevitable outcomes of energy analysis without approximations
or appeal to physical intuition.

This work was supported under NSF Grant GK-1838. A part of this work constitutes
a part of doctoral dissertation of S. Carmi. We wish to thank Mr. R. Hotchkiss of the
Computer Center of the University of Minnesota for writing the Bessel function sub-
routine used in our calculation. To Mr. W. Hung we are indebted for checking some of
the numerical calculations.

Appendix. Frobenius series as starting values for numerical solutions of differential
equations which have regular singularities at the origin. We illustrate the method first
by application to the real system (59) and then to the complex system (41a).

(a) Real-sixth order system. Consider the boundary value problem (59).

L3/ = -NVj,
j = Df = L2/ = 0 at r = 1, (59)

/ bounded at r = 0.
We expect three linearly independent solutions of this problem and seek them as Frobenius
series

/(r) = Zc/+I. (1A)
1-0

The coefficients ct are found recursively as the coefficients of in the series which
arises from forming L3f = — N2p2f with (1A)

Lsf = i: dlCy+i-\ (2A)
l = 0

where

di = fl {(0 + I - 2, - 1)03 + I - 2v) + (0 + I - 2») - N2}. (3A)

The values of /3 for which this procedure can be carried out are determined by the index
equation

d0 = 0. (4A)
There are six roots of (4A).
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(ft > ft , ft > ft , ft , ft) = (N, —N, N + 2, — N + 2, N + 4, — N + 4).
Consider the largest roots (ft , ft , ft). These three solutions are found to be linearly-
independent (see Ince [20]) and are regular at the origin. When N is larger than 4 the
solutions corresponding to ft , ft , ft are singular at the origin. When 1 < N < 4 solutions
belonging to ft or ft may be regular but they are linearly dependent on other solutions
and hence lead to independent solutions with logarithmic singularities. Hence for all
N > 0 only the solutions corresponding to ft , ft and ft satisfy the required conditions.
Then,

/, = r" + 0 (rN+6), U = rN+2 + 0(r"+8), /, = r*+4 + 0 (r"+1°), (5A)

are the leading terms of three independent solutions of (59)6. A linear combination of
these three solutions is a solution provided that this combination satisfies the boundary
conditions at r = 1, that is,

A(p, N) =
Ml) /2(1) /,(1)

DM1) DUl) DUO)
L2/i(1) L%{ 1) L%( 1)

= 0. (6A)

The nine elements of A may be provided by numerical integration of (59) using the
Runge-Kutta-Gill method. Each solution ji , /2 and /3 separately satisfies the differential
equations but only a linear combination can ordinarily satisfy the boundary conditions
of (59). The differential equation can be integrated from starting values d'fi(e0)/dr',
j = 0-5, i = 1, 2, 3 which are obtained from (5A) with r = e0 • A value of p must also
be guessed to provide elements for A. An iterative procedure for the least value of p
(the smallest zero of (6A)) is then employed and a value p(e0) determined. This procedure
is repeated for a sequence of values 0 < r = e{ —»0 and new values of p(e;) are determined.
Convergence is determined according to p(e,+I) — p(e;) < 5 for a preassigned 6 for all
i > J > 0. The criterion is not exact for one cannot set e = 0. The error in the starting
values is of the order of the next term neglected in the Frobenius series (5A). In practice,
convergence to four significant figures is very rapid. The values of Table I have been
checked using this procedure and are in perfect agreement with the exact Bessel function
solution.

(b) Complex fourth-order system. For Orr's problem (41a) we cannot provide ex-
plicit solutions and must rely on the numerical integration. We first rewrite (41a)
and (37c).

2D2/ = 2iapr Dj,

f = Df = 0 at r = 1, (7A)

/ bounded at r = 0,

where 3) = D2 — (1 /r)D — a. Frobenius series (1A) with complex coefficients c, are next
substituted in (7A). The coefficient of each power of r is equated to zero. The lowest
order term (r!+s-4) is found in the expression for

These are, of course, the leading terms of the Bessel functions of Eq. (60).
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»7 = Z [(? + I - 2)08 +1-3)
- 03 + I - 2)][08 + 003 +1- 1) - OS + 0]c,r,+'"4

- 2 D a2[(/3 + 0(/3 + Z - 1) - (jS + l)]c/+l-2 + £ «4c/+'.

The coefficient of this term with I — 0 yields the index equation

[03 - 2)08 - 3) - 08 - 2)][/303 - 1) - 0\ = 00 - 2)2(/3 - 4) = 0.
Of the four roots (0! , ft , ft, , ft) = (0, 2, 2, 4) only ft and ft are independent (see Ince
[20]). Two other solutions may be formed but these have logarithmic singularities at
the origin and must be discarded.

Axr2 and A2r4 where Ax and A2 are complex are the leading terms of two independent
solutions of (7A) and provide starting values for the numerical integration. To satisfy
the boundary conditions we must have

A(p, a) = = 0, (8 A)

(10A)

/i(i) U1)
duo) mi)

In practice we use an equivalent system of equations for the integration. We set
j = (p + rl' and

4 4

<P = Yj Ai<Pi . * = H A&i .
«-1 i-1

where the pair Op,- , ^,) satisfies the differential equations

3D2<fi = —2otprD<$ri , = 2aprDipt , (9A)

but not the boundary conditions.
The boundary conditions

?(1) = ¥(1) = D<p{ 1) = DV( 1) = 0,
<p, SE' bounded at r = 0,

are satisfied if

<Ol(l) ^2(1) <Pz(X) <94(1)

D<Pi{ 1) Dip2(l) D<p3( 1) Dip^l)

*,(1) *2(1) *,(1) *4(1)

0^(1) DV2( 1) D* 3(1) D9 4(1)

The elements of A (p, a) are obtained by the direct integration of (9A) with the starting
values

<Pl = r2> <P2 = <P3 = <Pi = 0, ^ = 0,

*>1 = <P3 = ¥>4 = 0, ^ = 0,

^3 = r2, Sfj = ^2 = ^4 = 0, <p = 0,

= r\ = *2 = *3 = 0, <P = 0,

again using the Runge-Kutta-Gill method.

A(p, a) = = 0. (11 A)
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We obtain the least root p of (11A) for a fixed a and e< by an iterative procedure
similar to that described under (a). Then we seek Min„ p(a). The result is Min„ p(a) =
180.6, a = 3.6. This compares with Min p(a) 180., a = 3.7, which has been calculated
by hand by Orr.
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