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THE COMPLETENESS OF BIOT'S SOLUTION OF THE
COUPLED THERMOELASTIC PROBLEM*

BY

A. VERRUIJT
Technological University, Delft, The Netherlands

Abstract. In one of his papers on the theory of thermoelasticity, M. A. Biot [2] has
presented a solution to the differential equations very similar to the well-known
Boussinesq-Papcovitch solution in the theory of elasticity. In this note it is proved
that this solution is complete, the proof being based upon Mindlin's theorem of com-
pleteness of the Boussinesq-Papcovitch solution in elasticity.

1. Basic equations of thermoelasticity. In a three-dimensional space a bounded
open region D is considered. A space point will be denoted by x and the boundary of D
will be denoted by B. It is assumed that B + D is a regular region (see Kellogg [1]).
The mathematical formulation of the linear thermoelastic problem for an isotropic
solid in the absence of body forces, inertia effects and internal heat supply consists of
the following differential equations [2], holding for all x £ D, and for all values of the
time variable larger than some initial value, which will be taken as zero:

(X + aOVV-u + mV2u - /3V0 = 0, xED, t > 0, (1)
c, dd/dt + I3T0 d(V-n)/dt - /cV20 = 0, x £ D, t> 0, (2)

where
u: displacement vector of the solid material,

T0: absolute reference temperature,
6: incremental temperature,
t: time,

X, ix'- Lamp's constants,
/3 = (X + |a: coefficient of volumetric thermal expansion,

cspecific heat per unit volume in the absence of deformations,
k: thermal conductivity.

The vector function u and the scalar function 6 will be assumed to be continuous, to-
gether with at least their first two partial space derivatives and their first partial time
derivatives. It is furthermore assumed that the first partial time derivatives of these
functions possess continuous partial space derivatives up to the second order at least.
Functions having these properties will be said to be of class C<2,1>. Functions of which
only continuity in space and of the first n partial space derivatives is required will
be said to be of class C("'. Clearly a function of class Cu'm) (m > 0) is also of class CM.

For a complete description of a particular problem a set of appropriate initial and
boundary conditions must be given in addition to the differential equations. In this
note, however, restriction is made to general solutions of the differential equations,
regardless of the boundary and initial conditions.

*Reeeived September 15, 1967.
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As already noted by Biot, the theory of thermoelasticity is mathematically analogous
to the theory of deformation of a fluid-saturated porous elastic material, which is often
called the theory of consolidation of porous media. The quantity /30 in Eq. (1) is then
replaced by the pressure of the fluid in the pores, and in the second equation the co-
efficients have a different physical meaning. The major difference between the two
branches of science arises in applications, because in thermoelastic problems the first
term in Eq. (2) usually dominates the second one, whereas in problems of consolidation
the usual magnitude of the material constants results in the second term in Eq. (2)
dominating the first. For a mathematical treatment this difference is of course irrelevant.

2. Biot's solution. A solution of the differential equations (1) and (2) has been
given by Biot [2] in the following form:

u = V(<p + r-ifc) + 7<r, (3)

6 = [(X + 2M)/j8] W + [2(X + 2/i)/j8 + 7(X + rf/fiV • tfr, (4)
where 7 is a constant related to the material properties by

7 = —2(X + 2n + /32ro/c»)/(X + n + fi2T0/c,), (5)

and where <p and are a scalar and a vector function, respectively, which satisfy the
following differential equations

d(VV)/df = CV2VV, (6)

V2tt = 0. (7)

In Eq. (6) C represents another constant, which is related to the fundamental material
properties by

„ _ k H2y
c, (X + 2M+ /32T„/c,)' W

Apart from some minor differences in notation the equations (3), (5), (6), (7), and (8)
were given in Biot's paper [2]. The expression (4) for the incremental temperature was
not given explicitly by Biot, but follows immediately from his considerations.

It can easily be verified by direct substitution from (3) and (4) into (1) and (2)
that any pair of functions <p and it satisfying Eqs. (6) and (7) indeed represents a solution
of the problem. The question naturally arises whether this solution is complete, or, in
other words, whether any solution of the basic equations (1) and (2) admits a repre-
sentation in the form of Eqs. (3) and (4). That this is indeed the case will be shown
below.

3. Proof of completeness of Biot's solution. The starting point of the proof is the
following theorem:

Theorem 1. For any solution v0 of the homogeneous linear problem

(X + m)V V -v + mV2v = 0, x E D, (9)

where D is the interior 0/ a regular, bounded region and where v is to be of class C{n) in D
(n > 2), there exists at least one pair of functions f0 , F0 of class C(n) in D, such that

v„ = V(/0 + r-F„) - 2[(X + 2/x)/(X + At)]F„ , x G D, (10)
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V2/0 = 0, x ED, (11)

V2F0 = 0, x E D, (12)

where r is the -position vector of the point x.

Equation (9) is the differential equation for the displacement vector in an isotropic
linear elastic material in the absence of body forces. The solution (10) was given by
Papcovitch [3], and independently, but somewhat later, by Neuber [4]. It is usually
referred to, however, as the Boussinesq-Papcovitch solution because the fundamental
parts of the solution were already presented by Boussinesq in his memoir on the theory
of elasticity [5]. The presentation of the solution by Papcovitch already implied that
it is a complete solution. An explicit proof of the completeness theorem stated above
has been given by Mindlin [6] (see also Eubanks and Sternberg [7]). The proof is based
upon Helmholtz' decomposition theorem which asserts that any vector function of
class C<n> (n > 0) in a regular region can be represented as the sum of the divergence
of a scalar function and the curl of a vector function, both functions being of class
C(n+1' in that region (see Phillips [8]).

The pair of functions f0, F0 may be replaced by a pair of functions h0, t^o of the same
class according to the following relations

h0 = fo + [1 + (2/7) (X + 2 M)/(X + M)]r-F„ , x ED, (13)

*0 = — (2/7) (X + 2m)/(X + n)F0 , x ED, (14)
where 7 is an arbitrary nonzero constant. If it is furthermore assumed that 7 is finite,
then there exists a unique inverse relationship between h0 , iI-0 and / , F0 ,

fo = ho + [I + (7/2) (X + m)/(X + 2p)]r • t(r„ , X ED, (15)

Fo = —(7/2) (X + M)/(X + 2MHo , x ED. (16)
Substitution of Eqs. (15) and (16) into Eqs. (10), (11) and (12) at once leads to the
following generalization of Theorem 1.

Theohem 2. For any solution v0 of the homogeneous linear problem,

(X + M)VV -v + V2v = 0, x E D,

where D is the interior of a regular, bounded region and where v is to be of class C(n> in D
(n > 2), and for any constant value of 7 other than zero and infinite, there exists at least
one pair of functions h0 , tl'o of class Cln) in D, such that

v0 = V (h0 + T'tto) + 7*to > x E D, (17)

V2h0 + [2 + 7(X + M)/(X + 2/OJV -ife0 = 0, x ED, (IS)

V2t£o = 0, x ED. (19)

Equation (17) constitutes a somewhat more flexible representation than Eq. (10) be-
cause of the arbitrariness of 7. This is compensated, however, by the fact that the
governing equation for h0 , Eq. (18), is more complicated than the one for /0 , Eq. (11).

Equation (1) is the inhomogeneous counterpart of Eq. (9), and therefore, in ac-
cordance with a fundamental theorem from the theory of linear differential equations
(see e.g. Ford [9]), the complete solution of the inhomogeneous equation (1) consists
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of the sum of a particular solution of that equation and the complete solution of the
corresponding homogeneous equation (9).

A particular solution of the inhomogeneous equation

(X + (i)VV'U + mV2u - pve0 = 0, X e D, (20)

where 80 is an arbitrary function of class C(m) in D (•m > 1), and where u is to be of
class C<n> in D (n > 2), will be sought in the form

u* = Vn, x G D, (21)
with <pn a scalar function of class C<n+1>. Substitution of (21) into (20) shows that this
amounts to determining a function <p^ such that

V[(X + 2ft)vV* - pe0] =0, xE D,

which will surely be satisfied if the expression between brackets vanishes,

(X + 2m)VV* - P0o = 0, i£ D. (22)

This is Poisson's equation, a solution of which is (see e.g. Phillips [8])

+ *eD- (23)

where r is the distance from the point x to the center of the volume element dv. In
order that <p+ be of class Cl<n+1> it is sufficient to require that 0O is of class C(n) [8].

If now a function ip0 is introduced as

<Po — h0 + <p., x£D, (24)

then this function is of class C(B) and it satisfies the equation

(X + 2ji)VVo + [2(X + 2/x) + 7(X + M)]V-tto — 000 = 0, x G D, (25)

as follows immediately from (18), (22) and (24). Hence the following theorem has now
been established.

Theorem 3. For any solution u0 of the inhomogeneous linear problem

(X + m)VV -u + juV2u - /3V0O = 0, x G D,

where D is the interior of a regular, bounded region, u is to be of class C<n) in D (n > 2),
and where 60 is an arbitrary function of class C<n) in D, and for any constant value of y
other than zero and infinite, there exists at least one pair of functions <p0 , tfro such that

u0 = V(<po + r-»to) + 7^0 , iGA (26)

(X + 2M) VVo + [2(X + 2/x) + 7(X + M)]V -ifeo - P90 = 0, x G D, (27)
V2t|fo = 0, XED. (28)

So far Eq. (27) has been considered as an equation relating <p0 to the functions ij;0
and 60 , and the function 80 has been thought of as an arbitrary function, given in D.
Alternatively, however, Eq. (27) may be considered as a representation for the arbitrary
function 60 and in that case Theorem 3 asserts that for any pair of functions u0 , 60 of
which 0O is arbitrary and u0 is related to 90 through Eq. (20) there exists at least one
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pair of functions <p0, t(r0 of which i(r0 is harmonic, but no restriction can be made concerning
<p0 ■ The functions u0 and 60 can be derived from <p0 and i!'0 through Eqs. (26) and (27).

No use has yet been made of the fact that in order for the pair of functions u0 , d0
to represent a solution of the coupled thermoelastic problem they have to satisfy not
only Eq. (1) but also Eq. (2), i.e.

c„ dOo/dt + pT0 d(V-u0)/dt - kV2d0 = 0, x ED, t> 0. (29)

This merely represents a restriction on the admissible functions 60 , and therefore the
representation (26), (27) is possible for any pair of functions u0 , 60 satisfying Eqs. (1)
and (2). Substitution of (26) and (27) into (29) shows that in order for the representation
to be a solution one must have

(X + 2n + pT0/c,) d(V2<p0)/dt - (fc/c.)(X + 2m)V2VVo

+ [2(A + 2m + p2T0/c,) + y(\ + n + jUTo/e,)] d(.V-i<0)/dt = 0, x E D, t > 0.
(30)

In this equation the constant y is still arbitrary. By choosing

_ 2(X + 2M + (32T0/c,)
T X + m + P2T0/c, ' (31)

the last term in Eq. (30) vanishes and one obtains

d(VVo)/dt = CVWo , x E D, t > 0, (32)
where

n = — ^ ^  ("Q3'\
c, (X + 2M + 02Ta/c,) {66)

Equation (32) constitutes the governing equation for <p0 . This function will be required
to be of class C'i,l) in order to give meaning to the differential operations appearing
in Eq. (32). From Theorem 3 with n = 4 and the considerations just given the following
theorem is now obtained, restricting the admissible functions to those of class Cu,1>,
which form a subclass to the functions of class C

Theorem 4. For any fair of functions u0 , 60 , being a solution of the differential
equations (1) and (2), and both of class Cu,1) in D, with D the interior of a regular, bounded
region, there exists at least one pair of functions <p0 , ijf0 of class in D, satisfying the
equations

d{V2<Po)/dt = CV2Wo , xE D, t> 0,

V2i{ro = 0, X E D, t > 0,

where C is given by (33), such that

u0 = V(^0 + r- tfro) + T^o i x E D, t > 0,

e0 = [(X + 2m)//3] Wo + [2(X + 2M)//9 + y(\ + v)/0\V ■ tfr, , x E D, t > 0,
where y is given by (31).

Hence under the conditions of Theorem 4 Biot's solution is complete.
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