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BY
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Introduction. If u is a displacement field in a linear, homogeneous, isotropic medium
occupying a region A, then, in the absence of body force, it satisfies

VV-u + (1 — 2v)V2u = 0, -1 < v < J (1)

everywhere in D, the interior of A. v is Poisson's ratio and Gibbs' vector notation is
in force.

Contemporary treatments of the various boundary value problems associated with
(1) usually begin with a representation of u in terms of harmonic functions. In this way,
one obtains equivalent functional equations on dD, the boundary of D, for the deter-
mination of these intermediate variables. Of the available general solutions, the most
often used is

u = V(0 + r-1];) — 4(1 — c)t!r = Pm-(<j>, it), m = 4(1 — v), V2($, t^) = 0 (2)

where r is the position vector and P„, is the linear differential operator which produces
u from the potentials (<f>, it). Its appeal is found in the low order of derivatives which
appear both in (2) and the resulting form of the traction vector on dD. Although (2) is
referred to as the Papkovich-Neuber solution, its origins are in the work of V. J. Bous-
sinesq of the last century.

When replacing the displacement by P4t)> 01ie must be assured the desired
u is contained among the elements of Pm • (4>, i'e). Assertions guaranteeing this replacement
are called completeness theorems for the representation (2), and such results are now
classical. Indeed if dD and u are sufficiently smooth, then there always exist harmonic
functions (<t>, tj;), regular in D, with a prescribed degree of continuity in A, such that
(2) is valid (see [1], [2]). Furthermore, if A is unbounded and u decays suitably, then
so do the potentials [3].

Inherent in all derivations of (2) is the fact that the range of {<j>, t|r) is broader than
is necessary to underwrite its completeness. The principal efforts attempting to suppress
this redundancy relate to the role of the scalar potential <f> and whether or not it can
be taken zero in (2) without impairing completeness. An excellent review of the history
of this problem along with its first correct analysis was given in [4]. Their main result,
relevant to the work here, is contained in the following theorem:
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Theorem 1. Suppose A is star-shaped with respect to the origin which is in D, both dD
and u are sufficiently smooth, and m is not a positive integer. Then every such u is o/ the form

u = Pm-(0, 10 in A (3)

where is harmonic and sufficiently smooth.

The authors of [4] were motivated to Theorem 1 by the nonuniqueness of a set of
potentials corresponding to a given u. With this property they proceed, in a cleverly
elementary way, by employing solid harmonic expansions in conjunction with an inte-
gration of a partial differential equation along a spherical radius. This ray integration
is the source of the star-shaped hypothesis while the restriction on v is eigenvalue in
character.

The main result of this paper is an extension of Theorem 1 to a class of periphractic
and/or unbounded regions, and the form of (3) when m is a positive integer. These
derive from a formulation similar to the oblique derivative problem of potential theory.
Subsequent use of the Fredholm alternatives, as they apply to the resulting singular
integral equations, provides the extensions contained in Theorems 4, 5, and 6. Exploiting
this nonuniqueness in different ways yields two other completeness theorems which
limit the range of the boundary values of the potentials. (This, in effect, is how Theorem 1
could be handled also. However, the fact that <t> — 0 on dD and its harmonicitv in D
force it to be zero everywhere.) All of the representations presented are unique in the
sense that P„ • (<f>, i{r) = 0 if and only if (<£, t{r) = 0 whenever the potentials meet the
requirements of the specific theorems. Uniqueness of (3) is implicit, although no specific
mention of it occurs in [4].1 All of these uniqueness theorems find a limited analogy in
the nature of the indeterminacy of the Kolosoff potentials [5] for plane problems.

The conclusion of the paper discusses possible extensions of these ideas to a wider
range of associated problems which can be set up in a similar way.

1. Nonuniqueness of ($, t[r). By setting u = 0 in (2) and operating on the remains,
first with the divergence and then with the curl (see [4]), we conclude that the potentials

<j>* = m<i> — r-V$, it* = V$> (4)

are such that Pm- (<£*, it*) = 0, whenever <i> is harmonic. Hence if u = Pm- (<£', t£')> then
u = Pm • (<t>, 10 where

<j> = <t>' + ra$ — r-V$ (a)

it = + V<£ (b) (5)

V2$ = 0. (c)

This redundancy in (2) leads us to three classical boundary value problems of potential
theory for a determination of $ by suitably fixing the boundary values of <t> and/or i(r.

'Such information is vital, for example, in finite difference techniques which replace A by a rec-
tangular space lattice with p interior nodes and q boundary points. In using (2), there are altogether
4(p + q) nodal values of (<j>, tf). The difference approximation of Laplace's equation gives 4p relations
between these unknowns and the boundary conditions 3q more. Any use of a digital computer requires
an additional q relations, which is precisely what the uniqueness theorems supply. It should be remarked
that individual solutions employing other methods for computation hurdle this facet of (2) on an ad hoc
basis.
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2. Dirichlet's problem for From (5a, b), we have that

<£ + r- i(f=<£'+r-iIr/+ m$i (6)

on dD. By specifying 4> + r • i|r on this surface, the boundary values of are defined
by (6) since (<£', i/) is known in A. Taking this combination to be zero on dD, we arrive at

Theorem 2. If A is a bounded region for which (2) holds, then (2) is complete when
(#, tj;) is restricted to the subset (<j>, ̂)i for which all elements satisfy <t> + r • i(r = 0 on dD.
Furthermore Pm- (0, t|r), = 0 if and only if {<j>, i(f), = 0 in A.

(6) gives the boundary values of m$i as —<f>' — r ■ it/, and consequently the harmonic
function <£, is uniquely determined in A. Thus if u, in (2), results from {<j>', tj/), then
according to (5a, b) with $ = , the set<r) also gives u and is such that 4> + r • tfc = 0
on dD. If (^! , i^) are so limited, and Pm-(<t>i , ^i) = 0 in A, it follows by taking the
divergence of this last relation that V • ifci = 0 in A. But V2(<£i + r ■ t^) = 2V • and
therefore <jf>! + r • ijr, = 0 everywhere in A. This reduces Pm ■ (4>i , = 0 to — mifci = 0,
and the proof of Theorem 2 is complete.

3. Neumann problem for By dotting (5b) with n, the outer normal to dD, we
obtain

d$2/dn = n-tfc - n-i&' (7)

as the boundary value of the normal derivative of • In order for (7) to give a well-
posed Neumann problem, we limit tj; to those functions for which n • t|r = C on dD. The
consistency condition /aB (d$2/dn) dQ = 0, fixes the constant C by

C = s'1 [ n -ifc'dQ
J dD

where s is the surface area of dD. The integral can be written differently by using (2):

f nu dQ = 2 f V•$' dQ — m [ n-1dQ = — (m — 2) f n- t(r' dQ.
J dD JD J dD J dD

Hence taking

C = -[(m - 2)s_1] [ n-u dQ, (8)
J dD

<E>3 is determined by (7) to within a constant, and we can state

Theorem 3. If A is a bounded region for which (2) holds, then (2) is complete when
($, t|r) is restricted to the subset for which n • \|r = C on dD and $ = 0 at some preassigned
point P0 of A. Furthermore the representation is unique.

Since (7) and (8) fix $2 to within a constant, the relation (5b) evaluated at P0 re-
moves this indeterminacy. If Pm • (<f>i , *ti) = 0 and (4>i , ifci) are as in Theorem 3, it
follows that #i + r • ifci = const, in A. Therefore t!r, = 0 and 4>i is a constant which must
be zero. QED.

It is worth calling attention to the fact that this theorem supposes a knowledge
of the boundary displacements. When the traction vector, t, is given and the displacement
and rotation is assigned at a point, u is unique. For this situation, the identity
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f i t dQ = (3X + 2m) f V udQ
J dD J D

coupled with the fact that Vu = (2 — m)V-tIr' allows for an evaluation of the con-
stant C.

In closing, we note that in regard to footnote 1, both this and the previous theorem
supply the additional q relations for the nodal values of (</>, it).

4. Oblique derivative problem for <I>. The remaining possibility is to set </> = 0
in (5a). Unlike the two previous conditions, the vanishing of <f> on dD implies it is zero
throughout a bounded A. For infinite regions, this is still true provided decays rapidly
enough. Thus this last boundary condition has the potential to resolve the principal
problem of redundancy. Especially, w7e might hope to reveal the character of the con-
vexity restriction of Theorem 1 and whether or not it is intrinsic to the problem. One
might conjecture that an investigation employing integral equations could unravel
this enigma. To probe this matter, we offer an analysis based on just such an approach.
Contrary to the above aspirations, the conventional theorems regarding the applicability
of Fredholm's alternatives in the cases to appear here limit dD more severely than does
Theorem 1. Our arguments are presented with the view that the methodology developed
will lead to an eventual resolution of this aspect of Theorem 1.

Setting <t> = 0 on dD, (5a) becomes

r-V$3 — = 4>' (9)

for the boundary condition on $3 . This problem can be treated by expressing <i>3 in
the form

Up) = feD dQ, R(P, Q) = |r(P) - r(Q)| (10)
and then by determining a(Q) so that (9) is satisfied by (10) on dD. Using the known
continuity properties of a single layer and its derivatives, we deduce the following
singular integral equation for a:

2tti(p)-n(p)a(p) + [ a(Q)K(p, Q) dQ = 4>'(p), p e dD (11)
*>dD

where n is the outer normal to dD and

K(p, Q) = -r(p) ■ [r(p) - r(Q)] -| - (12)

The Fredholm theorems, [6], apply if and only if

r(p) -n(p) is never zero for p t dD, (13)

and then (11) is solvable if and only if

f <f>'(Q)m dQ = 0 (14)
J dD

where j8(Q) is the solution of the homogeneous adjoint

2irr(p) -n(p)/3(p) + [ 0(Q)K(Q, p) dQ = 0, p e dD. (15)
JdD
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Calling D* the complement of A and writing

*(P) = I RcPq) dQ = * (P) PtD* (16)
jdD K{r, y; p £ D

it follows that at dD

d*+/dn - dV/dn = 4tr/?(p) (17)

where n is as in (11). Placing this into (13) we have

<5,+ d£_
dn dn dQ = 0. (18)

(Green's second identity, as it applies to <t>',^+, has been used to reduce the first integral
of (18).)

To compute M'(-P) we note that if

r-V* + (1 + m)V = 0 in D* + D = A* (19)

then the same arguments which led to the formation of (11) now produce (15) from (16)
and (19). Since 1Jr(P) is continuous in all space, the solution of (19) gives the ingredients
to apply (18). Because of (13), we need only consider (19) for a very special class of
D*. First let S0 , Si be two sufficiently smooth star-shaped surfaces with respect to the
origin which is inside S0 which, in turn, is inside S, and (13) is satisfied for both. (It is
not difficult to generate simple examples meeting these requirements.) With such S0 , Si
we have

Case (a). D* is the region D* exterior to S„ . Then if m is the positive integer n — 1

*-(P) = H-n(P), M>+(p) = H-.(p) (20a)

where J/_n(P) is an arbitrary solid harmonic of negative integral degree. For all other
values of m, we have

yV(P) = 0 in all of space. (20b)

Case (b). D* is the region D*b interior to S0 . Then

^(P) =0 in all of space (21)

for all values of m.

Case (c). D* is the region D*0 interior to S0 plus D* which is exterior to S, . In this
case

ST(P) = ° m D* (22)

tf_„CP) in D*
when to is the positive integer n — 1. For all other values of to, which is always positive
or zero, ^(P) = 0 in all of space.

All of these are established in the same way and so we only obtain (20). From (16),
~9~(P) is harmonic in D* and vanishes at infinity. Hence for sufficiently large |r|, ^~(P) =
Yz H-k(P). The linear independence of solid harmonics implies (20) for these values
of |r| . But is regular in all of D* ; hence by the principle of analytic continuation
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for harmonic functions, (20) holds for all P e D* . The argument for nonexceptional
values of m goes in a similar way.

With these preliminaries out of the way, we present the main theorems of the paper.
Theorem 4. If D* = Da and (2) holds in A, then 4> may be taken zero in (2) without

loss of generality provided m is not a positive integer. For the exceptional case (2) is complete
when 4> is limited to the set of solid harmonics H„(P).

To prove this theorem, we note that for the nonexceptional values (18) and therefore
(14) is satisfied for any <t>'. Consequently (11) always has a solution <T>3 which meets (9)
with <£ = 0 on dD. Since <t> is regular and harmonic in D it follows that $ = 0 in A. When
m is an integer, we write (2) in the form

u = X7H: + Pm-(ct>", $) (23)

■where <f>" = <j>' — and Hi is the solid harmonic of degree m which occurs in an ex-
pansion of <f>' in the vicinity of the origin. If <j>" is zero on dD, then the solvability condition
as given by (18) becomes

/„Kh ♦""-(« + »dn dQ = 0. (24)

An expansion of <j>" in solid harmonics in a sufficiently small sphere Y about the origin
does not contain any harmonic of degree m. Transferring the surface integral of (24) to
the spherical boundary of T, it follows that (14) is satisfied because of the orthogonality
properties of the surface harmonics. Hence <j>" can be taken zero in all of A and the proof
is complete.

Theorem 5. If D* = Db and u of (2) is such that (<£, d) vanish at infinity, then (2) is
complete for all m when <f> is taken zero.

Theorem 6. If D* = Dr then u = Pm ■ (0, V[r) is complete when m is not an integer. If m
is an integer and if S0, are such that a spherical surface about the origin can be constructed
which is wholly in D, then

u = Pm-(//„ , ,fc) (25)
is complete.

The proofs of the last two theorems only involve the elements of the proof of Theorem
4 and so we dispense with them.

5. Conclusions. The exceptional cases of Theorems 4 and 6 provide the counter-
example presented in [4] to show that when 4(1 — v) is a positive integer, (3) could not hold.
Actually, the device leading to (25) could also be employed in the proof contained in [4].

It would be desirable to have some test on the boundary data u to know whether or
not the Hm in (25) could be taken zero. If one sets up an argument similar to that of Sec. 4
based on the representation of i|r as a single vector layer, the symbol of the resulting
singular vector integral equation vanishes and the Fredholm theorems are not applicable.

Finally it is worth recalling from [4] and also from the nature of the analysis presented
here that whatever the shape and connectivity of A may be, if D contains the origin and m
is a positive integer, then P,„ • (0, i!;) can never be complete when V; is restricted to the
class of regular harmonic functions.
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