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—NOTES—

UNIQUENESS THEOREM FOR A MULTI-MODE SURFACE
WAVE DIFFRACTION PROBLEM*

By R. C. MORGAN (New York University and St. John's University)

Abstract. Uniqueness is demonstrated for the solution to the reduced wave equation
subject to a mixed boundary value condition that excites two surface wave modes. The
configuration is taken as a right-angled wedge and the edge condition assumed has the
form

d'u
dx' = 01-m) , 0 < h < f, for r—> 0.r

It is conjectured that the same procedure may be used to prove uniqueness for the
corresponding 2V-mode problem under the edge condition

z d'u
dx'

0(r-"2W-i)/3+ftl), 0 < h < §, as r-*0.

In this paper, we prove a uniqueness theorem for a mixed boundary value problem
that occurs in the phenomenological theory of multi-mode surface wave diffraction (see
Morgan, Karp, and Karal [1]). The method is essentially an extension of that employed
to the single-mode case in Morgan and Karp [2] and the formulation is a modification of
Stoker and Peter's work [3] on plane incidence for the Sommerfeld problem. We prove the
following:

Theorem I. Let u(x, y) have continuous second order derivatives in the wedge-shaped
region D defined by the inequalities 0 < r = (x2 + y2)l/2, 0 < 6 = arc tan y/x < 3tt/2
(see Fig. 1). Let ube a solution of the following boundary value problem:

1.1 u(x, y) satisfies the reduced wave equation d2u/dx2 + d2u/dy2 + K2u = 0, in D.
Here K is real.

1.2. du/dy = 0 for y — 0, x > 0 while (d/dx — \x)(d/dx — X2)w = 0 for y < 0, x = 0,
where X, and X2 are positive and distinct.

1.3. u and its derivatives satisfy the following conditions in D:

(a) t t
i-o i-0

d'u < M for r > R,0 )dx'~' dy'

where M is independent of r and 8 and R0 is some positive constant,

d'u(b) dx' - 0(?") as r —> 0 with 0 < h < #.
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Fig. 1

1.4 u can be written as u(x, y) = uineid,nl + urefUcted + uradia,.d , where

± Am exp [+X„z + i(K2 + \2m)1/2y],
m = 1 y

0, y > 0,

t Bm exp [+Xmz - i{K> + \lY/2y], X < °>
m = 1 y ^ vF,

.0, y > o,

uinc. =

Href I. —

and , J52 are constants representing reflection coefficients.
1.5 = u — Uine, ~ ureii. obeys the radiation condition

( durad.lim - iKurad.J = 0

uniformly in 6, 0 < d < 3ir/2 and vanishes at infinity.
Then, u(x, y) is unique.
Proof. As mentioned before, we extend the method of [2] to this. case. Hence, we allow

two solutions:

(1.1) uM = + u^n. + ul:l. , n — 1,2

where

(1.2) ti#,. = i
Z si"' exp [+Xmz - t(K2 + X2m)1/22/], X
m-l 2/ "}

0, y > 0.

These functions are taken to have possibly different reflection coefficients and possibly
different but radiating diffracted fields. Next we form the difference function

(1.3) * = uw - um

which is essentially a solution of the previously posed boundary value problem without
an incident field. Lastly, we introduce the auxiliary function

(1.4) v(x, y) = (d/dx — \i)(d/dx — \2)i{x, y)
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which is then a solution of the reduced wave equation satisfying homogeneous boundary-
conditions and obeys pseudo-radiation conditions.1 Furthermore, by the postulated edge
behavior of u(x, y), it is easy to see that

(1.5) v = 0(\/r1+h) as r —» 0 with 0 < h < f.

Thus on expanding v in the form

(1.6) v(r, 6) = X) C„(r) cos 2n j~ 1 0
n = 0

where
r3x/2 2w -i- i

(1.7) Cn(r) = Cn J v(r, 0) cos —^— 0 d6, n = 0, 1, 2, ■ • • ,

it follows that

(1.8) !>(r, 0) = DaH[)\{Kr) cos 0/3 + ^{"(Kr) cos 0.

The remainder of the proof consists in inverting v to obtain ip(x, y) in the form

0, y > 0,
y) =

t W - BL2>) exp [+XMx - i(K2 + \l)1/2y], * <
m = 1 !J ^ V;.

(1.9) + E ame+w f e-^DoKlm2 + t/2)1/2] cos |
m = l V. O

+ + y) ] cos 0| da

where a„ = (— 1)™/(X2 — X^. Then on applying the continuity conditions

(j 1Q) M = w(z, 0+) - u(x, 0") = 0,

we obtain a homogeneous system of equations for the four unknowns D0, , B[l) — B[2),

'This effectively means that
|i3r/2

lim / r1/2(dv/dr — iKv) cos [(2n + l)/3]0 dO = 0
r—>oo ** 0

ra = 0, 1, 2, • • • or equivalently this implies that (1.7) following obeys the Sommerfeld radiation con-
dition required of u,ad ■

The demonstration of this radiation condition is accomplished by first dividing the range of in-
tegration into three parts [0, n — 1/r], [jr — 1 /r, w + 1/r], and [ir + 1 /r, (3/2)^]. Then we estimate
each of the resulting integrals separately. On the first and third intervals, the conditions set forth in
Morgan [4] are satisfied, thus

f"
lim / r1/2(dv/dr — iKv) cos [(2n + l)/3]0 dd = 0
r—»oo J a

where [a, /3] = [0, ir — 1/r] or [ir + 1/r, (3/2)x]. Lastly, the integral over O — 1/r, tt + 1/r] is small
by virtue of the smallness of the range and condition I.3a.
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and B[u — Bl22) . However, the only solution to this system is the trivial one. Hence is
identically zero and u(x, y) is unique.

Final comment. Uniqueness for the analogous problem having a source incident
field (u,nc = iriHi01)[K(x — xQ)2 + (y — y0)2\1/2) may be formulated and proven in the
same manner as above. In fact, this was done for a plane structure under the A"th order
boundary condition, (d/dy + \m)u = 0 on y = 0, see Morgan [5]. Furthermore,
it is conjectured that the solution to the right-angled wedge under an iVth order condition
will be unique if we require

d'u(r, 9)
dx'

= 0{r-n2N~lW3+h]), 0 < h < f, asr-»0.
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