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Abstract. A modified form of Galerkin’s method is formally applied to an equation
involving a stochastic bounded linear operator. The result, in general, is a sequence of
stochastic linear algebraic equations. In the case of a statistically homogeneous operator,
however, it is possible to obtain a sequence of deterministic linear algebraic equations.
The formalism is applied to determining the electric field in a dielectric with a statistically
homogeneous random permittivity.

Introduction. In formulating a wide variety of continuum problems involving a
medium with material properties about which one only has limited information, e.g.,
the permittivity in a dielectric (e(r)), it is frequently convenient to introduce the concept
of a random medium. A random medium may be viewed as a family of media together
with a probability distribution defined over the members of the family. The more
information one possesses of the relevant material properties, the smaller will be the
size of the family encompassed by the random medium and/or the more selective will
be the probability distribution. Such formulations result in field equations which are
random (stochastic) in the same sense as above. The problem is to invert these equations
subject to any auxiliary conditions that may be present, e.g., to determine the family
of static electric fields existing in the media (E(r)). The stochastic solution so defined
is then a family of solutions together with a probability distribution defined over the
members.

The carrying out of a solution to the above problem is extremely complicated. In
most practical cases it is made impossible by the fact that the probability distribution
defined on the family of media involved is not known in detail. Rather, all that is avail-
able is some indirect information which is usually expressed in terms of various statistical
averages. It is obvious that in such cases, a complete determination of the family of
solutions together with a probability distribution to assign to this family is not possible.
In the best of situations, it is necessary to be content with obtaining some partial infor-
mation regarding the solution which likewise is usually in the form of various statistical
averages. In most important problems even this is not possible since a desired statistical
average of the solution variable is most often not uniquely determined by a finite number
of statistical averages of the variable defined by the random medium involved. Complete
knowledge of the probability distribution associated with the random medium is required
to determine even the simplest statistical average of the solution variable in these
cases. Because of this one is led to attempt to look for approximate answers for statistical
averages of the solution variable which depend only on a finite number of statistical
averages of any parameters which appear in the governing equation.

Two approaches to the problem are readily apparent. The first approach is to manip-
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ulate and average the stochastic field equations so as to obtain deterministic equations
on the statistical averages of the solution variable. The result of such an approach is
to obtain an infinite set of deterministic equations. An approximation may then be
introduced by truncating the set in some way, usually by invoking some physical argu-
ment, and the truncated set of deterministic equations is then solved to obtain the de-
sired statistical averages. This approach is most commonly used and several schemes
have been introduced for the systematic truncation of the statistical equations. A second
approach would be to attempt to obtain a general solution of the stochastic field equation
in the sense that the solution to any member of the family of equations defined by the
stochastic equation is a special case of the general solution. Once this has been accom-
plished the statistical averages of the solution variable that are of interest are directly
calculable. The difliculty with this second approach is that the stochastic field equations
in the problems of interest are usually of the form of differential or integral equations
with coefficients which are random functions of the independent variable(s). There are,
in general, no methods available for finding the general solution to such problems
exactly, and hence one is required to look for approximate techniques if any success
is to be achieved. Toward this end perturbation theory has been used to treat those
continuum problems involving a random medium which differs only slightly from a
given homogeneous medium. The perturbation theory is of only limited validity, however,
and in dealing with stochastic equations it is difficult to ascertain just what are the
limits of validity.

Another approach which may prove fruitful in obtaining the approximate solution
of a differential or integral equation involving stochastic coefficients is to attempt to
modify the method first given by Galerkin [1]. Galerkin’s method has been of great use
in approximately solving differential and integral equations with variable, although
deterministie, coefficients. Briefly, Galerkin’s method consists first of all in introducing
a sequence of ever-increasing subspaces of the Hilbert space on which the problem is
defined so that the limit of the sequence will be the entire space. Next a projection
operation is introduced and used in conjunction with this sequence of subspaces to
define a sequence of problems, the elements of which are the projections of the problem
to be solved onto each of the subspaces introduced above. Each of the projected problems
so obtained requires for its solution the inversion of a set of linear algebraic equations.
Intuitively, one might suspect that the solution of the limit of the sequence of projected
problems will converge to the solution of the original problem so long as the original
problem is selected from some suitably selected class. Convergence proofs have been
carried out, particularly in the Russian literature, for several classes of problems [2],
[3], [4], [5], [6]. In the absence of such proofs one is forced to rely on intuition strengthened
by the usefulness of results obtained by employing the method.

Assuming that the sequence of projected solutions converges to the desired solution,
then each element of the sequence may be viewed as an approximate solution. How
good is such an approximation? Clearly the answer to this depends on the sequence of
subspaces which is arbitrarily selected in the first step. Herein lies the art in applying
Galerkin’s method. It is obvious that a good choice for a sequence of subspaces will
depend on the problem to be approximately solved. Herein lies the difficulty in attempt-
ing to apply Galerkin’s method to a problem involving a stochastic equation. If the
stochastic nature of the equation is viewed as an ignorance factor, it is this ignorance
which makes a useful choice of base elements difficult.
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A modification can be introduced into Galerkin’s method which eliminates much of
the aspect of art in its successful application. This modification is a formal procedure
by which the problem to be solved dictates the sequence of subspaces to be used. Such
a modification, termed the method of moments, is presented in a book by Vorobyev [7].
While the method of moments is not as widely applicable as is Galerkin’s method, i.e.,
in its simplest form it is valid only for equations involving linear bounded operators, its
loss in generality is counterbalanced by its straightforward application for those problems
in which it is applicable.

Formal application of the method of moments to a problem involving a stochastic
field equation results in a sequence of subspaces, upon which the problem is to be
projected, known only in a statistical sense. That is, each member of the family of
equations represented by the stochastic equation will result in defining a different
sequence of subspace. Similarly, the sequence of projected problems is, in general, also
statistical in nature. For a special class of problems, however, it is possible to arrive at
a sequence of projected problems which is deterministic. That is, the sequence of problems
obtained by projecting a member of the family of equations onto the sequence of sub-
spaces to be associated with this member is independent of the particular member chosen.
For this to be true it is necessary that all random functions appearing in the problem
be statistically homogeneous, allowing our invoking an ergodic-type hypothesis, i.e., the
equating of an ensemble average to an average taken over the independent variable.

In the present paper we begin with a short review of Galerkin’s method as applied
to two types of problems, indicating the calculations to be performed in carrying out a
solution. The method of moments procedure is then introduced and it is shown how
its formal application to a class of problems involving stochastic operators results in
an iteration scheme involving deterministic sets of linear algebraic equations. The
method is then applied to the problem of determining the electric field in a medium
with statistically homogeneous random variations in permittivity. Details are carried
out for a one-term approximation and the result is compared with previously reported
work on this problem.

1. General discussion. Let us begin by considering two problems which may be
expressed by the equations

Az = f (1.1)
and
z = pdzx + f. (1.2)

In Egs. (1.1) and (1.2), z is the unknown element and f is the given element of some
Hilbert space H, while 4 is a linear bounded operator defined on H and p is a parameter.
For clarity it might be well to think of A as a differential or integer operator. For the
present we take A and f to be uniquely specified so that we are dealing with a determi-
nistic problem. Eq. (1.1) possesses a solution provided zero is not an eigenvalue of the
operator A and Eq. (1.2) possesses a solution provided x™' is not an eigenvalue of 4.
It might be noted that the solution to the Eq. (1.2) may be given in terms of the classical
Liouville-Neumann series

n times

z=1f+ pAf + B"AAf+ - + p"A - Af oo (1.3)

provided u is small enough.
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In order to apply Galerkin’s iterative scheme to either of the above problems we
begin by selecting a system {¢,} of linearly independent elements ¢, which is suitable
to serve as a basis for H. Thus, any element in H is uniquely representable by a conver-
gent series of the form

Yy = kZ bior (1.4)
=0

where the coefficients b, depend on y. The space defined by the first ne,’s is a subspace
of H which we denote by H,. A projection operator P, giving the projection of the
element y on H, is defined by simply truncating the series in Eq. (1.4) after n terms, i.e.,

n—1
Py = AZ bier . (1.5)
(=0

The projection of the problem represented by Eq. (1.2) onto H, may now be defined by
the equation

X, = udozn + fa (1.6)

where z, and f, are the projected solution element and forcing element, respectively,
and 4, is the projection of the operator 4 on H, defined by

A, = PAP, 1.7)

The sequence of solutions {x,; n = 0,1, --- } may be shown to converge to the desired
solution z provided that A is taken from a suitably restricted class of operators. The
sequence of problems defined by equation (1.1) is obvious after the above discussion.

The actual calculations to be performed in order to obtain the solution of Eq. (1.6)

are readily obtained. Expanding f, in terms of the base elements {¢,; k=0, 1,---, n—1},
we have
n—1
fn = Z CrPr (1.8)
k=0
where the coefficients ¢, are determined by the set of algebraic equations
n—1
Icz‘)ck(ﬂokiﬂoi):(fv@i) j=07"' 1n_1' (1'9)

In Eq. (1.9) the notation (a, b) denotes the scalar product, defined for the space H, of
the elements @ and b. Similarly the solution z, is expanded in terms of the base elements,
i.e.,

n—1

T, = LZ Qepr - (1.10)
k=0

Operating on z, by A, as defined by Eq. (1.7) and substituting the result into Eq. (1.6),
we obtain the following set of algebraic equations on the coefficients 4, :

n—1

Z(aki—“dlci)ak=0i =0, ,n—1 (1.11)

k=0

where d,; is determined by the equations

n—1
Edlci(‘Pi voi) = (Aow , 00) 1=0,--,n— 1. (1.12)
i=0
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The projected problem, therefore, consists in inverting three sets of linear algebraic
equations given by Egs. (1.9), (1.11) and (1.12).

The method of moments iteration scheme differs from the Galerkin scheme in that
we begin not by selecting a basis for H but by selecting a single element in H which we
may denote by z, . Next we generate an infinite sequence of elements {z,} from this
arbitrarily chosen element by means of the recurrence relation

2, =Az,., n=12---. (1.13)

Assuming that all of the elements so generated are linearly independent, the z,’s, like
the ¢,’s in Galerkin’s method, may be used to define a sequence of ever increasing sub-
spaces. One important difference is that the limit of the subspaces defined by the z,’s,
which we denote by H, , is not necessarily the entire space H. The subspace H, may be
said to reduce the operator A, however, in the sense that the result of operating on any
element H, by A will itself be an element of H, . Hence, under some circumstances one
can show that the solution to the problems given by Egs. (1.1) or (1.2) will lie in H,
provided we insure that the forcing term lies in H, . This is easily accomplished by
choosing 2, = f. It might be noted that this choice of z, results in a sequence of elements
{z,} which may be identified, except for a constant, with the terms in the Liouville-
Neumann series solution to Eq. (1.2).

Once the z’s have been selected as indicated, the solution may be carried out in the
manner outlined for Galerkin’s method. Alternately, one might suspect that the special
nature of the z,’s may result in a simple structure for A, , thereby allowing a somewhat
easier determination of the solution of Eq. (1.6). Vorobyev [7] does obtain a solution that
would require less work than does the inversion of the three (» X n) matrices required
by Egs. (1.9), (1.11) and (1.12). The same argument applies to the problem obtained
by projecting Eq. (1.1) onto H, .

We consider now the formal application of the method of moments to the case in
which A is not deterministic. The system of base elements obtained by successive appli-
cation of A will obviously be stochastic in that every member of the family contained
in A will define a separate system of base elements and hence a separate sequence of
subspaces. The system of projected problems as defined by the sets of algebraic Egs.
given in (1.9), (1.11) and (1.12) will likewise be, in general, stochastic requiring a different
solution for each member of the family contained in A. While the solution of a set of
random algebraic equations is easier to obtain than is a random differential equation
the task would still be formidable. Let us, therefore, not consider the general problem
but consider a special class of problems for which the system of projected problems is
not stochastie. This will occur even in the case in which the 7 2,’s and the foreing term
f are stochastic so long as the scalar product defined for the space H of any two of these
elements is deterministic. In dealing with differential or integral operators which contain
random functions of the independent variable(s), i.e., space or time, it is possible, by
means of an ergodic-type hypothesis, to define a Hilbert space with a scalar produect
which we can equate to an ensemble average so long as all random functions are statisti-
cally homogeneous. In such cases the scalar product of two random functions will be
deterministic.

For an important class of problems involving stochastic operators, therefore, the
method of moments provides an iteration technique for obtaining their solution which
requires the solution of a sequence of deterministic algebraic problems. In the remainder
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of the paper the technique is applied to obtain the first term in the sequence of two such
problems.

2. Electric field with prescribed average.

2.1 Formulation of problem. In this section we should like to treat the problem of
determining the static electric field, E(x), in an infinite medium with permittivity,
€(x), which can only be described in a statistical sense. The media will be taken to be
statistically homogeneous and isotropic. Thus, all moments of e(x) will depend only
upon the difference in coordinates and will be independent of their absolute orientation.
The solution will be given in terms of a prescribed average value for the electric field
which we shall take to be independent of position. Averages are taken here in an ensemble
sense but use of an ergodic-type argument allows us to associate such averages with
volume averages by virtue of the assumptions of statistical homogeneity which were
just prescribed.

The equations governing the electric field are

V-(¢E) = 0, (2.1)
and
V X E = 0. (2.2)
Writing
E(x) = (E;) k + E/, 2.3)
where (E;) k is the prescribed average value of E(x), and introducing the term
a(x) = In (x) — (In €(x)), (2.4)

where the ( ) indicate ensemble averaging, allows us to write the following equations
on E”:

V-E' 4 (E;)k-Va 4+ Va-E' =0, (2.5)
VXE =0 (2.6)

Following Prager [8], Egs. (2.5) and (2.6) may be replaced by an integral equation
formulation by means of the free-space Green’s function 1/r. Thus

E'(x) = (E“> f X a‘;‘i’:') -1 f  V'a(x’)-E'(x) dv’ @7

wherer = x — x’ and V'’ is the gradient operator taken with respect to x'.

2.2 Operational formulation. To express Eq. (2.7) in terms of operational notation
we introduce the Hilbert space H consisting of all vector functions G(x) defined over all
values of x for which the volume integral

lim 1 f G(x)-G®) dv

99—

exists. Addition and multiplication by a scalar are defined according to the usual rules
for addition and multiplication of vector functions. The scalar product associated with
the pair of elements G(x) and H(r) is denoted by (G, H) and defined by
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(G, H) = fiffvl f (G(&)-H(x)] dv.

The norm of an element G(x), denoted by ||G||, is given by

lI6l| = \/}gg} [ 6@-66) av.

If we now consider that the elements in our space are known only in a statistical
sense and restrict ourselves to vector functions of position which are statistically homo-
geneous, then we may associate the scalar product and norm with the following statistical
means:

(G, H) = (G -H(x)),
6]l = V(6®-6w).
By introducing the operator A defined on our space by

__L I o n. ’ ’
AG = 41“/; T3Va(x) G@E’) dv, 2.8)

the integral equation governing E’ may be written in the form
E'=F + AF’ 2.9)
where

(Es) [ 1 da(x’)

F=-—4:7r o dxh

dv’. (2.10)

2.3 One-term method of moments approximation. Restricting our attention to those
media for which a method of moments iteration converges, we shall now calculate the
first-term approximation. The single-term approximation is obtained from a trivial
solution of Egs. (1.9), (1.11) and (1.12) for » = 1, once we choose ¢, = F(x), and may
be written simply as

E'(x) = a, F(x), (2.11)
where the constant a, is given by
1
“©TI- R B/FD’ @12
which for the statistical problem is given by
Ao = 1 (2.13)

1 — (AF-F)/(F-F)

Carrying out the operations indicated by Eq. (2.13), we find it convenient to take
the ensemble average at the point x = 0. So doing, we obtain

(F-F) = f f 55 ar 75, @a(9) dv, dv, 2.14)

Applying the restriction of statistical homogeneity and isotropy, it is possible to carry
out the integrations indicated in Eq. (2.14) giving
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(F-F) = (E5)" («")/3. (2.15)

The appendix may be referred to for intermediate calculations.
Operating of F with A, forming the scalar product of the result with F and taking
the ensemble average at the point x = 0 gives

_ <E1>2f / f _r__t_(r—s)
(AF-F) = PPV as oL {a@a(s)a(t)) dv, dv, dv, (2.16)
where Vr is the gradient operator with respect to the position vector r keeping s and t
constant. Applying the restriction of statistical homogeneity and isotropy to Eq. (2.16)
allows a partial integration giving

(AF-F) = —(E,)’ I (2.17)
where
= = f f 58 2 aOala(s)) do, do, 2.18)
Substitution of these results into Eq. (2.13) gives
ay = 1 (2.19)

1+ 3[/(%)
2.4 Comparison with previous results. Next, we consider a limiting form of the

above solution for the case of small fluctuations of the permittivity above some average
value. Writing

ex) = (g + €(), (2.20)

this corresponds to |€'|/{e) < 1.
Expansion of the various expressions for small ¢/(e) and retention of a single term
gives

(Es) T 9¢'(x)

FO) ~ =4 ). 7 ou, @ (2.21)
and
’ ’ ’
™ 16r <> f f P 6r a5, (€ Q@< (s) v, dv, . 2.22)
Therefore, in the limit of small perturbations, the method of moments result reduces
to
<E2> I' ae’(x’)
’ = — '
B = i )7 a, @ (2.23)

This result agrees with the single-term perturbation solution given by Brown [9], Prager
[8], and Beran and Molyneux [10].

In subsequent work dealing with obtaining bounds on an effective permittivity,
Beran [11] used a variational principle to obtain an improved solution. The variational
principle invoked states that the only vector function E(x) taken from the class of
functions which satisfy ¥V X E = 0 in some domain together with a prescribed value
of E on the boundary of the domain which will also satisfy the equation V -eE = 0 in the
domain is the one for which the functional
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U=lfmxm
2w J,

where V is taken over the domain, is a minimum. For the case in which () is described
in a statistical sense, Beran modified the above principle by first replacing the condition
that all trial functions E(x) satisfy a prescribed value on some boundary by a condition
that the ensemble average of all trial functions be some prescribed value and also by
replacing the volume integral in the functional to be minimized by an ensemble average,
ie.,

U = } (¢E-E).
This modified principle was then used to ascertain which E(x) of the family defined by
E®x) = (Ey)k + MEi(x),
where E,(x) is the small perturbation solution given in Eq. (2.23), will minimize the
functional given above. The correct value for A was shown to be [11, Eq. 18]:

) (2.24)

1
T 14 31/
where I is given by the limiting form in Eq. (2.22). It is interesting to note that this
value of \ corresponds to that which would be obtained for a, if we formally replaced
(AF-F)/(F-F) by its limit as |¢'| /() — O.

3. Electric displacement vector with prescribed average.

3.1 Formulation of problem. A problem closely related to that in Sec. 2 is to obtain
the solution in terms of a prescribed average value for the electric displacement vector
D(y) = «(y)E(y). The preceding solution is of little use since it requires prescription
of (E) = (D/e) and not (D). The same restrictions to media which are statistically
homogeneous and isotropic that were made in Sec. 2 are also to be made here.

The governing equations expressed in terms of the electric displacement, D(y), and
n(y) = 1/¢(y) are

v-D =0, (3.1)
and
vV X (uD) = 0. 3.2)
Proceeding as before, we write
D(y) = (Dy)k + D'(y), (3.3)
and introduce the term
B(y) = Inu(y) — (n u(y)), (34)
allowing us to obtain the following equations on D’(y):
V:D'=0 (3.5)

and

V X D'+ VB X (Dy)k + VB X D' =0. (3.6)
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Eq. (3.5) is sufficient for us to conclude that the irrotational part of the vector D’
is zero. Thus, D’ = V X H where V-H = 0'. Upon substitution into Eq. (3.6), we
obtain

VH — V8 X (D X H) = —(Dy)k X V8. (3.7

Taking the curl of Eq. (3.7) allows the reintroduction of D’ with the resulting equation
expressed as

V(D' + (D:)kB) = (Dy)k-VVB + V X (VB X D). (3.8)
Eq. (3.8) may be replaced by an integral equation by using the free-space Green’s
function 1/r. Thus, we write
r 66(3”) &

s

+ 4?7 f 5 X [V'B(Y) X D'(y)] & (3.9)

D) = ~(Dsi + 22 [ &

wherer = y — y’ and V'’ is the gradient operator with respect to y’'.
The same function space is introduced as was introduced in Sec. 2 allowing our
expression of Eq. (3.9) in the following operator form:

D’ = P + BD/, (3.10)
where
D, By .,
Pw) = (D + 2 [ 5804 (3.11)
and the operator B is defined by
BG = - [ 5 x [V/87) X G)] (3.12)
ir J, ! '

where G(y) is a generic element of our space.

3.2 One-term method of moments approximation. As before, we restrict our attention
to those media for which the iteration scheme will converge and calculate the first term
approximation. The result is

D'(y) = bo P(y) (3.13)
where

1
b = 1T —(BP-P)/P D) 3.19)

Applying the definition for the scalar product to (P-P), with the ensemble average
taken at the point y = 0, results in

®-P) = 0" + P [ 2 060)

<D3)2 f f o zas (B®B(s)) dv, dv, (3.15)

1Strictly speaking this is not true since Helmholtz’s theorem, which is the root of this statement,
requires that the sources lie within a finite region. To give a more proper formalism we must take n’ to
be zero outside some finite volume and then subsequently allow the volume to become infinite.
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If the restriction to statistically homogeneous and isotropic media is invoked, it is
possible to carry out each of the integrations in Eq. (3.15). The result is
(P-P) = 2(D,)’ (§°)/3. (3.16)

Carrying out the operation BP gives

<D3> ' 1R2 (<! ’
fly IaX[kXVB(Y)]dv

% [ 2=Fax{v x [ 2227 s aaen | av arr G

and the scalar product results in

(BP-P) = —% k- f ;’% X [V. X (8°@)B(0))k] dv,

DL [ 28 [ v x Z wren | m, .
e
éfr_SSf,, f f { [f: tf ar o W(r)ﬂ(s)ﬂ(t))]} dv, dv, dv, . (3.18)

Applying the assumption of statistical homogeneity and isotropy allows us to greatly
reduce Eq. (3.18), the result being

(BP-P) = —(D:)' I, (3.19)
where
2
16,,.2 j: j: P a,. 9% (B(0)8(x)B(s)) dv, dv, . (3.20)
Substitution of these results into Eq. (3.14) gives
bo = 5 3.21)

1 + 3I/2(8%)
3.4 Small perturbation solution. To obtain the small perturbation solution, we write

r(y) = ) + &), (3.22)
expand all terms in powers of |u’|/{u) and retain only the first term. The result is

P(y) ~ _<D32Z;(y)k + iﬁ:‘)) 5 = a,;';ay') av’, (3.23)

and

_1 s 8 oo
I~ g | [ 55 ot WOWOW®) o, do, (3.24
In the small perturbation limit we can make the equation of

W/ ) = —()/ e)
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which upon substitution in the above gives

D@k _ (Ds) [ 1 9€'(y") ',
P(y) © o )7 o dv (3.25)
and
~T6m (6)3 f f i 6r %5, (¢(0)e'(x)e'(s)) dv, dv, . (3.26)
Thus, in the limit of small perturbations, the method of moments result reduces to
/ D)Wk _ (D) [ 1 (Y) 1)
D(y) = © " ae ). 7 oy dv (3.27)

This last result agrees with the single-term perturbation solution given by Beran [11].
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APPENDIX: REDUCTION OF VARIOUS INTEGRALS

f f s o 2as (a(@a(s)) dv, dv, . o

Introducing a change in coordinates from (r, s) to (r, p=s—r), we write the two-point
correlation function as {(«a(r) « (p + r)) which under assumption of statistical homogeneity
is a function of p alone. Thus

_ 62f(p){ r+p 1 }
I, = s ]r+p|3 = dv, ¢ dv, .

The integration over r space is carried out first. The region of integration is interpreted
as the region without two vanishingly small spheres aroundr = 0 and r = p and within
a third sphere with center at the origin, the radius of which shall increase without limit.
To carry out the integration we write

L= V'(|rip|)v<)d”'
"f [lr+p| ()] |r+p| (l>d”"

The second integrand vanishes throughout V, . The first volume integral is converted
to a surface integral by means of Green’s theorem. The surface over which the integration
is to be carried out consists of the three spheres defining V, :

n-r

ot |7

where n represents the outward normal. Only the integral and the surface of the small
sphere about r = 0 do not go to zero when the appropriate limits are taken. This integral
is readily evaluated giving I, = 4r/p. Thus,

—ir [ 12D,

I, = 3d(1r
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'To evaluate this integral, we can make use of the assumption of statistical isotropy and
write

L=-3[ viena,.

Two successive applications of Greens theorem as above allows an immediate
evaluation of the above integral giving

161r 161r
1= 1 j0) = 16m (oo,

f f j:,,r 7 |r 3 Vs as oL, (e@a(s)a(t)) dv, dv, dv, .

Introducing a change in coordmates from (r,s,t)to (r,p =1 — s, q =r — t), we write
the three-point correlation function as {(«(r) @ (t — p) @ (r — q)) which under assumption
of statistical homogeneity is a function of p and q. Therefore

azf(p'q){ r r—gq }
f f (Vp + Vq) ap3 aqs L' 7'3 Ir _ q|3 dvr dv,, dv, .

%p 'v

)
I,

It

Integrating over r space and rearranging, we may write

3f(p, q)
hfqaqa[, 3 Vo= ps d]dvq

+41rf 2 %Uqlvq"“p q)dvq]dv,.

Use of Green’s theorem allows the integration over p space for the first integral. The
result is seen to vanish since by assumption of statistical isotropy of(p, q)/9ps must
vanish at p = 0. Green’s theorem may also be used to simplify the second integral with
the result

F

[ = 4r ffp qaf(pq)d .
' v Joe D’ ¢° O3 9 e 3

r
L= [ Sk 608@) v, .
Under the assumption of statistical isotropy, we may write
1
L =3 [ 5v.6080) d,
which is readily integrated using Green’s theorem. The result is

__4n(8)
I, = 3

L=k [ X[V, X 60K d,

= k[ 9Y) x (v, x Eop0 i
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= —k- f ' V. X [} V: X <Bz(r)6(0)>k] dv,

+i [ 1y, x (v, x @00 . @

The first integral may be converted into a surface integral which may be shown to
vanish. To evaluate the second we may first expand the integrand to obtain

I = k f }[k-v,v, — kV2(B@B(0)) dv,

- f ’ rl [37 - vf](ﬂ%r)ﬂ(o» dv, .

Under the assumption of statistical isotropy this becomes

2 [ 190
-3 [ 7 vEwso) o,
which is readily evaluated:
1, =)
®)
= [ ESx [ 9. x 2 o a an

Introducing a change in coordinates from (r, s) to (r, p=s—r), we write the two-point
correlation function as (3(r)8°(p + r)) which under the assumption of statistical homo-
geneity is a function of p alone. Thus

_ T p+r af(p)p]
I, = f f I+ 1] [Vp s dv, dv,

[ [ xx@]{[ 2x B ana,.

?

The integration over r space can be carried out in a similar manner as was the integral
containing the dot product. In the present case the result is zero. Thus

I,=0
L=k[ [ 5x {v, [ﬁ s EOB@8() | ar, av. . ©)

Introduce a coordinate transformation: r = r, p = r — s. Thus, we write

I = —k- f f I x {(vr + V) X [p afg;,ar)]} dv, dv,

where

1(p, 1) = (B(0)B(r)B(r — p))-

I, = —kf x{f v, X [p36f(p")] dv,}dv,.

Consider first
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The integration over p space vanishes. Therefore,

- _ P af@_r)]}
= —k- /; ' j: F { [p3 ps dv, dv, .
Next consider

_ w gm]}
I, = kf"rgx{v,x[ps o2 | ¢

=k’V»X{lva[p M]dﬂ,—k‘f lv|'><{Vr><[£:<)Qf(p—'r)':|}dvr°
r p° 9ps T p° op,

The first integral may be converted into a surface integral which can be shown to vanish.

Therefore
__[lg.|r af(p,r>] [p af(p.r)]
B f.,r [p dps Iry do, +kf p° Ops do, .

The first integral may be integrated by parts and the second may be evaluated. The
result is

_ _[rpdi@D, _ paf(p,O)
Is = j: 3°°3 6 61)3 dv, k 61)3

<
=3

Therefore

L= =[ [ 5kt os0se — o) v do, — tx [ Bk 2 @0p(-p) .

The second term may be evaluated under the assumption of statistical isotropy which
allows us to write it as

L= =% [ 2.9,608m) d = 5 @),

Therefore

L= - [ [ k5T 0s0se) dn i,

”r vp

f,, f f 55X { [,: _ttla 32 9% (ﬁ(r)B(S)ﬁ(t»]} dv, dv, dv, .

Introducing a change in coordinates from (r, s, t) to (p=s—r, s, q=s—t), we write
the three-point correlation function as (¢(s — p) ¢(s) ¢(s — q)) which under the assump-
tion of statistical homogeneity is a function of p and ¢. Therefore

1,=f"f" ) I: I 3x{(v,+vox[q —M]}dv.dv,dv,

™

I,

¢ 9ps 9¢s
= q 9*f(p, q)] { s — }
[. /:' (VD+VG) X [q apsaqa . Is_plaX dv. dv,dl)

The integration over s space can now be carried out and the result is zero.
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