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1. Introduction. In recent years much work, both theoretical and experimental,
has been done in the exploration of magnetogasdynamic or plasmadynamic phenomena,
their engineering applications and their astrophysical implications. A good deal of
this work, however, has included the approximation that the electric current always
flows in the direction of the electric field vector. In reality, charged particles in a mag-
netic field do not move in straight lines, but rather tend to drift in a direction per-
pendicular to both the electric and magnetic fields, giving rise to the so-called Hall
current or Hall effect. Because of the Hall effect, Ohm's law is modified in such a way
that the electrical conductivity becomes a tensor quantity. The usual approximation
of scalar conductivity is valid only when the collision frequency of the particles is so
large that the particles have negligible time to drift across the magnetic field lines
between collisions, i.e. when the cyclotron frequency of the particles is much less than
their collision frequency. For cases where this condition is not met, the Hall effect
must be taken into consideration.

This paper extends our earlier results [1] to account for this phenomenon. We con-
sider a dense plasma with a plasma frequency much greater than the cyclotron frequency
of the particles present which, in turn, is much larger than the inverse of the charac-
teristic flow time (i.e. the ratio of the free stream velocity to the characteristic length
of the obstacle). In addition, the cyclotron frequency for the electrons is assumed to be
of the same order of magnitude as the collision frequency between electrons and ions.
We begin Sec. 2 by stating the equations pertinent to this problem. After linearization
and nondimensionalization, we proceed to find the basic equation governing the per-
turbation quantities. A normal-mode analysis is applied to this equation to determine
all the inherent field modes for the two-dimensional and axisymmetric flow problems.
We then express the general form of the solutions as an arbitrary combination of all
the field modes. Finally, Fourier synthesis is employed to treat simple slender bodies.
In Sec. 3, we restrict our analysis to the case of large magnetic Reynolds number. This
approximation allows us to simplify the mode solutions and their coefficients, and
renders the Fourier integrals tractable. The simplified integrands of these Fourier
integrals are identical in form to those of the scalar conductivity case which were studied
earlier. Therefore, in Sec. 4, we are able to make qualitative predictions about Hall
current effects without having to evaluate the integrals themselves. Finally, our con-
clusions are given in Sec. 5.

2. Formulation. To investigate the influence of the Hall effect upon the steady
motion of a dense, compressible, fully ionized, quasi-neutral gas, the pertinent equations
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are the usual continuum magnetogasdynamic equations with a generalized Ohm's law:

V-(pcj) = 0.

pq-Vq + Vp = J X B,
pTq • V S = J-(E + q X B),

p = pRT, (1)
V-B = 0,

V X B = fi.J,
V X E = 0

and

J = cr(E + q X B + B"V'Vp«) — w.r j/?!"1 J X />'.

Here /S, p, p, Zi, T, q, B, J and E have their usual meaning and n, n, e, ue , t, a and p.
are respectively the magnetic permitivity, electron number density, electron charge,
electron cyclotron frequency, collision time between ions and electrons, electrical con-
ductivity and electron gas pressure. The only difference between this set of equations
and that for scalar conductivity is in Ohm's law. This set now includes the effect of
the electron pressure gradient on current density in the plasma and also the Hall current,
which describes how the electrons, in addition to moving parallel to the effective electric
field, also drift across the magnetic field lines in a direction perpendicular to both electric
and magnetic fields.

The nondimensional version of Eqs. (1), linearized to first order in perturbed quan-
tities, may be expressed for two-dimensional or axisymmetric flows as the single equation

P4> = dx{[K'(4 + 5?) + " »

"-{* + J?) + (m" ~ ''

+s?X4+*!?) - °- <2)

a + (,yI
+

where

- 1 " 4 k
and j = 0 or 1 for two-dimensional or axisymmetric flow. Here P is a linear, sixth-order
partial differential operator, 4> is one of the perturbations in the velocity or magnetic
field components, M, m are the freestream Mach and Alfven numbers and Rm is the
magnetic Reynolds number based on a typical length. If we define the total velocity
and magnetic field vectors in a three-dimensional orthogonal coordinate system, which
may be either the system (x, y, z) or (x, r, — 6), to be q = U[ 1 + u, v, w\ and H —
Hm[ 1 + hx , hv , hz] then all the perturbation quantities satisfy Eq. (2). This equation
was first obtained by Sears and Resler [2]. We are concerned here with how the solutions
to this equation for large magnetic Reynolds numbers are modified by the inclusion
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of the Hall effect [i.e. we are considering ue = 0(r-1)]. Iu particular, we will be concerned
with the flow over a finite slender body.

When coer vanishes, i.e. when the scalar conductivity approximation is valid, Eq. (2)
degenerates into the fourth-order partial differential equation

A + ^-A/'m-'A£)* = 0.

A detailed quantitative description of the solutions to this equation is to be found in
Tang and Seebass [1]. The other limit for which qualitative predictions of the behavior
of the flow exist is that of incompressible flow over an infinite sinusoidal wall [2].

To proceed with our problem, we follow the procedure employed in our analysis
of the scalar conductivity case. That is, we shall first solve Eq. (2) for the 7/-component
of the perturbation velocity v(x, y). The other two components of the perturbation
velocity can then be obtained from the continuity equation and Ohm's law. Having
determined the flow field, the magnetic field can easily be determined from the curl
of the linearized momentum equation, Ampere's law and the selenoidal requirement
on the magnetic field.

Applying a normal mode analysis to Eq. (2), we assume that v(x, y) is proportional
to exp (i\x — ky) in the two-dimensional case and to Kx{ky) exp (i\x), a modified
Bessel function of the first kind, in the axisvmmetric case. Then v(x, y) satisfies Pv = 0
provided that the ratio, r = kX'1, satisfies the dispersion relation

r + [2iN(m~2 — 1 — \M2m'2) — (2 + j3~ + wer2)y' + {[1 + 2/32 + (1 + P')u2,t2}

— 2zW[(l + If)(m~2 — 1) — ^M2m~2] — N2(m~2 — 1 )(jfm~2 — 1) \r2

+ [2ip2N(?n-2 - 1) + N\m-2 - 1 )2/32 - 02(1 + w2t2)} = 0,

where

N = Rm\~\

Since the above equation is bicubic in form, there are three independent roots that
satisfy the uniform undisturbed boundary condition as y —» ^. Therefore, we may
express v as the sum of the product of arbitrary functions of X with the mode solutions.
The arbitrary functions of X are to be determined from the boundary conditions at the
interface. For a finite body the solution v(x, y) must consist of contributions from all
wave numbers, X. Thus the general solution for a finite body has the form

±r.(x)\al(-xr'vy-,ix.
[ K^Xr.y)

From the inviscid boundary condition on the velocity, we find

t F,.(X)j 1 1 = (27T)"1 f \ 1'(S'0) 1 e~"'d8, (3)
Ix-y-'J [(27t)-1<s'(s)J

where v(s, 0) is the slope of the body on the z-axis, and S'(s) is the slope of the cross-
sectional area of the body. Other relations between the "F's must be supplied by the
boundary conditions on the electromagnetic quantities. Only the boundary conditions
on the magnetic field vector need be considered here. That is, we need only require
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that the magnetic induction be continuous across the interface. We shall assume that
the permeability of the body is the same as that of the fluid, and impose this continuity
on the magnetic field vector II. If we require that the body be an insulator, the above
boundary condition coupled with the requirement that all components of Tl be harmonic
inside the body leads to two more linear relationships between the Vs. For a slender
body, these relations reduce to

f 1 I Fa(X) = -Q(X) j 1 1 F3(X) (4)
L(Xr,)~lJ "2 ^ l(Xr3)-1

and

1 1f,(x) r' 1
2 r>zr, - /3

2 a2 2

i(xr3r
F3(X), (5)2 1 'v V V 2 i

[(Xr.rj " _r* 1 '"3 1

where

«w" - if^r] and = 1 + - m")■
Combining Eqs. (3)-(5), we find

I i If (x) — li — (r* ~ " 1}I W)-11 (r* _ 1)(rf _ ^
-(^3) J

+ (rl - |32) .(A /:1 t<s'o) Lfa' ds. (6)
l.(2ir)- o'(s)

With Fi(X), F2(X) and F3(X) determined, we can easily express each of the perturbations
in terms of the F,(X)'s:

ip2u(x, V) = [ Zr,(X)F,(X)|CXp( Xr'y)\e^ rfX;
I K0(\r,y) J

iP

v(x, y) f t F.(X)JeXp(-Xr^]e-rfX;
I K^Viv) J

ip2m~2hx(x, !/) = J 12 ^7™-jr,F,(X)|

(7)
KiiXr.y)

exp ( —Xri2/)l ,-x,
'I K0(\riV) J

li'm-h,(x, y) - /" t [^hrf-]FiW{exp (-Xr,„)l d>_,
L Kt(krty) J

ht{x, y) = m2w(x, y).

Here K0(z) is also a modified Bessel function of the first kind. Finally, by requiring
that the ions and electrons have the same temperature, so that we can simply replace p.
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by one-half the total gas pressure p in Ohm's law, we obtain for the electric field

]■
Ex(x, y) = m2Rm1

Ey{x, y) =

dx u(-x' yS> ~ iy W^X' V>>

dx ' - ~ m2)}1

(8)
(1 + \weT)m2llml ~ + (1 — rn) Iw(x, y)

+ ^ - 1 jy(>, y) + buerhy{x, y),

and

E,(x, y) = 0.

If one is interested in determining the distribution of surface charge density on the
obstacle, it can be obtained by taking the difference of the normal components of the
electric field across the interface. In our case, the electric field inside the obstacle satisfies
Laplace's equation, and its amplitude can be determined by matching the tangential
components of the electric field across the interface.

Equations (4)—(8) complete our description of linearized magnetogasdynamic flow,
including the effects of tensor conductivity, past a slender two-dimensional or axisym-
metric body. As in our previous analysis for the scalar conductivity case, if we let «
be representative of the body slope and thickness, the important requirement that our
linearization be valid again leads to the condition (m~2Rm)1/2e = o(l). In addition, for
a symmetric body with no current flowing inside, all the cyclic constants vanish for
this problem.

3. Large magnetic Reynolds number. Our next step is to solve the dispersion
relation for its roots. While in principle we can find the exact forms for the roots, the
evaluation of the integrals in Eq. (7) would be formidable, judging from the complicated
functional dependence of the roots and the F/s upon X. Consequently, to obtain an
analytic description of the flow field it will be necessary for us to approximate the
integrands in Eq. (7). In this regard, the quantity of primary importance in the disper-
sion relation is iV = EmX_1.* We shall limit our investigation to the case of large mag-
netic Reynolds number, i.e. to large N.

With this in mind we shall assume that r2 = anN\ If we substitute this form
for r2 into the dispersion relation and equate coefficients of like powers of N, we obtain

n = ±[^mX-'m-2(m2 + M2 - 1)]1/2 + 0(N~U2)}

r2 = ±[iRJC1m-2(mt - 1)]1/2 + 0(N~1/2)

and

r3 = ±i( 1 - c2)1/3[l + - mTV] + 0(N'2),

where

c2 = m2M\M2 + m2 - 1)"\

*Note: This parameter differs from that of our earlier analysis for the scalar conductivity case by a
factor M~*. While our former analysis is valid for the incompressible case, the normal mode analysis
used here fails in this limit.
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Furthermore, if we substitute Eqs. (9) into Eqs. (4)-(6), we find

™ ■11 +<**">>■»" L *
v(s, 0) ]

(27r)_1(S'(s)J
r2(X) = \ x 1. ~^ + 0(N~2) (27T)-1 [ -J v(s,0) j.e"'Xs ds (10)

and

r,(x) = m + 0(N~')
.M + m — 1

r f »<». o) L-
[<2i)-,,S'(s)j

x" ds.

A comparison of these results with our former analysis [1] indicates that rx and ra are
respectively the usual parabolic wake and either the hyperbolic or elliptic modes of
the scalar conductivity solution, and that r2 is the new addition due to the effect of
tensor conductivity. From the form of r2 in Eqs. (9), we see that it is identical to r,
in the limit of M 0. Thus, we would expect the qualitative behavior of this new mode
to be that of a parabolic wake, which we shall call the 'Hall wake'. Notice also that, to
the order of accuracy of our analysis, the scalar conductivity modes are completely
independent of the presence of the Hall effect: ueT appears neither in the roots nor in
the coefficients. On the other hand, the coefficient of the new component, V2, is propor-
tional to co2r2. This guarantees that in the limit of coer —> 0 we will recover the scalar
conductivity results. Furthermore, from the form of the roots, Eqs. (9), and the co-
efficients, Eqs. (10), we can expect that the contribution of the Hall mode to v(x, y)
is of OCR"1) relative to the scalar components.

With the simplifications afforded by Eqs. (9) and (10), we can formally combine
Eqs. (4)-(7) to obtain the asymptotic representations for all the perturbation quantities:

and

u(x, y)

mT2hx(x, y)

- II". ± l v(s, 0)?\ exp ( — Xriy)

-7JI(2tt) 'S'&Xr'Kofaiy).
y *'ei dsdx,

v(x, y)

— ~lw(x, y)

iS2m~2hy{x, y)

-/32(wer)_1m'2/i2(x, y)_

w [[' £
J J — CO 1=1

]

Si

V i

UJ

Ks,0) exp (-\r,y) ^ ^

(2T)-,S'(s)\r,K1(\r,y))

where the r.'s are given by Eqs. (9) and where

M2 - 1
M2 + m2 - 1

0(N~l), ti = 1 + 0(N-'),

F<2) = + 0(N~2), T2 = 1 + OiN'1),

1/(31 = + 0(Ar'); = c"(c2 ~ M'i] + 0(Ar,);
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5, = .1/ ! + m2 - 1) + 0(N"),

S2 = -iflJIfV'm-Vr"2 + 0(tf°).

m\M2 - c) n(V-2,
5i ~ ~iRJC\m2 - 1) + °(N }"

We might point out here that the large N( = approximation, when used
in the context of Fourier synthesis, requires the special assumption that the higher
harmonics of the mode solutions are not important. It is necessary, therefore, to give
an indication of how rapidly the integrand occurring in the Fourier transforms should
fall off for large wave numbers. A detailed investigation of the errors introduced by
large wave numbers has been carried out in references [1] and [5]. It was found that,
with the possible exception of circular regions of diameter 0(Rcentered at the leading
and trailing edges, these errors are negligible.

4. Qualitative conclusions. The close correspondence of the above solutions with
those for scalar conductivity immediately leads us to the following qualitative ob-
servations:

(1) Because the charged particles now drift in the direction perpendicular to both
the electric and magnetic fields, our problem is no longer strictly a two-dimensional one.
The Hall effect introduces a perturbation current density in the ^-direction, which
interacts with the unperturbed magnetic field to cause a Lorentz force in the z-direction.
Since we have assumed that there can be no pressure gradient in the z-direction to
offset this force, a cross flow component results. This in turn causes other perturbations.
Altogether six new components, w, h, , Ex , Ev , J x and Jv , are excited by the Hall
effect, in addition to those present in the scalar conductivity case.

(2) Tensor conductivity also introduces an entirely new field mode in the form
of a wake, which we have termed the 'Hall wake'. Thus all the perturbation solutions
of this problem are made up of the superposition of three modes: the scalar wake mode,
the Hall wake mode, and either the elliptic or hyperbolic mode.

(3) To the order of accuracy of our analysis, the scalar components (u, v, hx, hy, E,, J,)
for the scalar wake and the elliptic and the hyperbolic modes are unaffected by the
inclusion of Hall effect, and are therefore identical to those obtained for the scalar
conductivity case.

(4) All the new components (w, h, , Ex , Ev , Jx , J„) for the scalar wake and the
elliptic and hyperbolic modes, as well as all the perturbation components for the Hall
wake, are proportional to (coer)n where n is positive. Thus, in the limit of vanishing
weT all the Hall effects disappear and we recover the scalar conductivity solutions of
Tang and Seebass [1] in the two-dimensional case and the mode solutions of Lear [3]
in the axisymmetric case. If we also let M —> 0, we would recover the incompressible
scalar conductivity solutions of Lary [4].

(5) An order of magnitude analysis shows that the Hall effects are important only
for the wake modes. That is, the magnitudes of components iv, hz , Ex, Ey, Jz and in
the elliptic and hyperbolic modes are much smaller than those of the scalar conductivity
components; while in the tensor or scalar wake modes, the tensor conductivity com-
ponents dominate or are of the same order of magnitude as the scalar conductivity
components.

(6) In spite of the mathematical similarities that exist between the two wake com-



31S J. Y. T. TANG AND R. SEEBASS [Vol. XXVI, No. 3

ponents, a closer look reveals some difference in their characteristics. The width of the
scalar wake grows as (R~'x |m2{M2 + m2 — 1)_1|)1/2 in the x-direction, that of the Hall
wake grows as (R^x \m2(jn — 1)-1|)1/2. Thus, the Hall wake can be thicker or thinner
than the scalar wake, depending on the initial conditions of our flow problem. The
Hall wake is forward-facing in sub-Alfvenic flow and rearward-facing in super-Alfvemc
flow, whereas the transition from forward- to rearward-facing occurs at in + M2 = 1
for the scalar wake. In the scalar wake, the cross flow (two-dimensional) or spinning
component (axisymmetric), w, is of the same order of magnitude as v; in the Hall wake,
w is much larger than u and v. Furthermore, w is of the same order of magnitude in both
wakes but with opposite signs. At the surface of our body, the Hall wake contribution
is equal to but opposite in sign from the scalar wake contribution, and their sum vanishes.
This satisfies the current-free boundary condition for the insulator which implies that
h, — constant inside the body. However, because <f> hz d, must also vanish, h, = 0
on the boundary. Then from Eq. (7), which gives h, = m2w, we conclude that w = 0
on the boundary. Finally, in contrast to the scalar wake, the difference in the orders
of magnitude of the perturbation velocities in the Hall wake indicates that the com-
pressibility effects which are important in the scalar wake are negligible in the Hall wake.

To test the validity of the above qualitative observations, we may go back to the
governing equation. The existence of the Hall wake mode can be demonstrated if one
applies the boundary layer approximation to Eq. (2). This is possible since the analytic
forms of the roots in Eq. (9) suggest that the width of the wake is proportional
to (xRmiy/2. Thus, in the wake regions, the length that characterizes the changes in
the ^/-direction is (xjR~')1/2; the characteristic length for variations in the x-direction
is simply x. But this means that the variation in y is 0(R'J2) relative to the variation
in x in the wake regions. However, by normalizing the x and y coordinates separately
with respect to their own characteristic lengths, we can effectively make variations
in x and y (of the new normalized coordinate system) comparable. This procedure is
equivalent to a stretching of the ^/-coordinate. If we apply this normalization procedure
to Eq. (2), the relative importance of each term in the governing equation can be esti-
mated from the order of magnitude of the coefficient preceding it. By retaining only
the largest terms in orders of R„ the following equation results for the two-dimensional
case:

£,£2£,</> = fL + (m~2 - 1)_dy dx. , + m"2(1 - m2 - M2) |] =

where now (d/dx)<j> = 0{(d/dy)<f>) and £3 is spurious because of boundary conditions
at infinity. In this equation we immediately recognize the two bracketed operators
as merely parabolic diffusion operators. The solution to £2<£ = 0 gives the usual scalar
wake component, while the solution to £i<fr = 0 is the new addition, the Hall wake
component. The transition of each wake component from forward- to rearward-facing
is governed by the change of sign of the coefficient multiplying the x-derivative. Thus,
except in the incompressible limit, the transition lines are different for the two wake
components. In addition, since £! is independent of M, the compressibility effects
which play an important role in the scalar wake mode are negligible here. The main
result of this new mode is the excitation of the cross-flow component.

For the flow region outside the wakes we expect the characteristic lengths to be of
the same order of magnitude in both the x and y directions. Thus, no re-normalization
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is necessary here. If we again retain only the largest terms in Eq. (2), we obtain in the
two-dimensional case:

Pf 3Q( 1 - m?) ? , ? I _ _
2 nj2 ~ 2 T~ ~ 2 0 — U •m2 - M dx2 1 6/

This equation describes the scalar conductivity magnetoacoustic component, and con-
firms our observation that Hall effects are important only in the wake regions.

The above results are summarized in Figure 1, which includes the qualitative effects
of magnetic Reynolds number and tensor conductivity upon flow fields in different
regions of the Taniuti-Resler-Imai diagram. The detailed solution for a specific biconvex
profile has been carried out to confirm the qualitative predictions made here [6].

5. Conclusion. We have succeeded in determining the effects of tensor conductivity
upon aligned-fields magnetogasdynamic flow when the electron cylotron frequency is
of the same order of magnitude as the collision frequency. Analytical solutions for the
flow fields about simple profiles can easily be obtained for all regions of the Taniuti-
Resler-Imai diagram. These solutions exist everywhere provided RH2t = o(l), are
valid when R~x = o(l), and satisfy the appropriate boundary conditions on the body
and at infinity.

The major effect of tensor conductivity is to introduce a new mode in the form of
a wake which we have called the 'Hall wake'. The structure of the Hall wake is quite
different from that of the scalar wake. This wake may have significant implications
with regard to the interpretation of probe measurements made for the purpose of plasma
diagnostics.

C2<l

M2
HALL WAKE  ELLIPTIC COMPONENT

 SCALAR WAKE ^^WAVES

Fig. 1. Sketch of the flow for various regions of the Taniuti-Resler-Imai diagram.
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