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Abstract. This paper deals with radiation (scalar, electromagnetic, or gravita-
tional) produced by an extended source. The object is to construct a model source the
radiation from which is concentrated in a jet of small angle with an assigned target
direction. This is done by taking for the source an infinite train of high-frequency plane
waves travelling in the target direction with the basic speed of propagation, the amplitude
falling off exponentially with distance. The critical number, to be made large in this model,
is the ratio a/A, where a is a typical radius of the source and X the wave length. However,
it is also shown that a jet of scalar radiation may be obtained from a source which
possesses no frequency but consists of a single shock wave.

1. Notation. The summation convention is used. Suffixes have the following ranges:
Latin 1, 2, 3, 4 and Greek 1, 2, 3. Units are such that the fundamental speed of propaga-
tion is unity. Imaginary time is used = it). The coordinates are rectangular cartesians,
and an event is indicated by xa, (x,, it), (x, it) or simply by x. The notation for vectors
is similar. Partial differentiation is indicated by a comma. To permit without confusion
exponential forms for trigonometric functions, a second independent imaginary unit j
is introduced so that we have i — — 1, f = —1, ij = ji. The symbol Re indicates the
real part with respect to j.

In general the notation is that used by me elsewhere [1], [2].
2. Scalar radiation. We are concerned with a scalar field <t>{x) generated by a

source-function Six) and the wave-equation

<t> a. = = S. (2.1)

It is understood that S = 0 outside some finite domain D of space, or that S tends to
zero sufficiently fast as we go to spatial infinity at any time.

As a particular case, we have sound-propagation in a gas for which a pressure-density
equation is given. The density p satisfies

□ p = Pt.t , (2.2)
where P, is a body-force per unit volume constituting the source. This differs from (2.1)
only in that the right-hand side is the divergence of a vector field. We shall proceed with
(2.1) and return to (2.2) later.

The retarded potential solution of (2.1), observed at the event X, is
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</>(X, iT) = — (4tt)"1 J S(x, it) |X - x|-1 d3x, (2.3)

where t is the retarded time,

t = T - |X - x|. (2.4)

This means in fact that the integral is to be taken over the null cone drawn in spacetime
from the event X into the past. This is illustrated in Fig. 1, which shows the time-axis

Fig. 1. Space-time diagram.

Ot, the observation event X, and the event A(0, ^Y) at the intersection of the said null
cone with the time-axis. We see also the distance R of X from 0 (R = |X|), and we note
that T — R + t. Fig. 1 also shows an important null vector ka drawn on the null line AX,
the first three components ka being direction cosines and fc4 = i; we have

kX = 1, h = i, kX = 0. (2.5)
The 3-vector k appears in Fig. 2, which is a space-diagram, the projection of Fig. 1 oil
t = 0.

Now (2.3) is an exact formula for all X, but we are interested only in the principal
part of the distant field. This means that we are to push the observation event away
towards spatial infinity. It is most convenient to do this by pushing X out along the
line 4X, keeping r and ka unchanged. R and T become very large. When we do this,
two things happen to the integral (2.3). First,

|X - xl"1 = R~l + 0(7T2). (2.6)

Second, we are to replace the null cone by the 3-flat tangent to it along the null vector
fc„ , that is, we are to replace (2.4) by

t = Kx, + r. (2.7)

In fact, with the understanding that X is pushed out along ka as stated above, we have

lim ( — ±irR<p(X, iT)) = $(k, r), (2.S)
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vhere

$(k , t) = f S(x, it) d,x (2.9)

with f as in (2.7). The details of the above argument present no difficulty. Our attention
is now directed to the function $ as the only thing we are interested in.

So far there is no mention of a jet of radiation. To get a jet, we have to choose the
source function S(x, it) in such a way that the outgoing radiation at great distance is
concentrated near some selected target direction. Let this direction be indicated by the
unit 3-vector k* (Fig. 2). It is convenient to take a fourth component k\ = i, so that
we have a null vector k*a:

k*k* = 1, kf = i, k*k* = 0. (2.10)
It is also convenient to introduce an auxiliary vector

Ka = ka - k*. (2.11)

Then we have

k4 = 0, k2 = KgKa = 2(1 — cos 6), k = 2 sin (2.12)

where 6 is the angle between k and k*.
We now come to the crucial point in the argument, the choice of the source-function

S(x, it). We would prefer to choose a function S vanishing outside some finite domain D,
but it is more illuminating to take S vanishing exponentially at spatial infinity, because
it makes the calculations much simpler. Accordingly let us take

S(x, it) = Re C exp (—r2/a2 + jwu). (2.13)

where C, a and w are real constants, r = |x] and

u = t — k%x, — r*, (2.14)

k* being the direction cosines of the target direction and r* a real constant. The geo-
metrical significance of u is that u = 0 is the equation of the 3-flat tangent along the
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null vector k* to the null cone with vertex at (0, ir*) ; in fact this 3-flat is tangent to all
null concs with vertices on the null line drawn through that event in the direction of k*.

To obtain <!>, we are to substitute in (2.9) the function S as in (2.13), at the same time
substituting for t the value (2.7). This gives

<f<(k. t) = Re C J exp (—r2/a + jwv) d3x, (2.15)

where

v — k,x„ + n, n = t — t*. (2.16)

The integral is to be taken over all space. It is easy to evaluate, yielding

$(k, r) = C' cos u(t - t*), (2.17)

the amplitude C' being

C' = C(arl/2)3 exp ( —o2co2k2/4), (2.18)

with k = 2 sin §0 as in (2.12).
It is clear then that we can concentrate the radiation on the target direction (d = 0)

by making the dimensionless quantity aco large. Now a may be regarded as the radius
of the source. Once it has been chosen, we can ensure such concentration (i.e., obtain a
jet of radiation) by making the circular frequency to sufficiently large. Equivalently,
in terms of wave length X = 2ir/w, we are to make the ratio a/\ large.

If we define the directivity as the ratio of the square of the maximum amplitude to
the mean value of the square of the amplitude for all directions of k, we find by a simple
calculation that the directivity is

2p(l — e-"'")-', P = a'cc2. (2.19)

Let us now turn to the equation for sound waves (2.2) and make a modification in
the above argument. Instead of choosing S as in (2.13), let us choose the body force
to be

P„ = lie C„ exp ( — r2/a2 + juu) (2.20)

with C„ a real constant vector and u as in (2.14). We secure agreement between the equa-
tions (2.1) and (2.2) by taking S = P„,„ :

S(x, it) = Re Ccr( — 2x„/a2 — juk*a) exp ( —r2/a2 + juu). (2.21)

Thus, if p denotes the deviation of the density from its equilibrium value, we have,
as in (2.8),

lim ( — 4irRp(X, iT)) — $(k, r) = Re J C„( — 2x„/a' — juk*) exp (—r~/a2 + jcov) d3x,

(2.22)
with v as in (2.16). To handle this integral, let us put

w = —r2/a2 + juv, (2.23)

and note that

d(e")/dx<r = ( — 2 xjdr + juK„)ew = ( — 2 xja — juik* + jwk,)ew. (2.24)
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Thus (2.22) may be written

3>(k, t) = Re C, J [CO,* — juk,ew] d3x. (2.25)

The first part of the integrand contributes nothing, while the second part is, to within
a constant, what we already had in (2.15). Thus we get

$(k, r) = C" sin co(r — t*), (2.26)

where the amplitude is

C" = uCXiav'y exp ( —a2a)V/4). (2.27)

This amplitude vanishes in a direction k perpendicular to C. The vector C is so
far arbitrary. To get the best jet in the direction k*, we should choose C„ = Ck* . Then
(2.27) gives

C" = uC(aTr1/2)3 cos 6 exp ( — a2c/ sin2 |0). (2.28)

For large aco, the directivity is the same as in (2.19), viz., 2a2u2.
3. Electromagnetic radiation. Let Fab( = —Fba) be the electromagnetic tensor and

Ja the 4-current. Maxwell's equations read

F„b.b — J a , Fab.c 4" Fbc.a + Fca,b = 0. (3.1)

Hence it follows that

F ab , ee = OFab = J a,b Jb.a • (3.2)

The 4-current Ja is the source of the radiation, but these functions cannot be freely
chosen: they must satisfy the constraint

J a , a = 0. (3.3)

It is more convenient to work with a source-function which is free except for the condi-
tion of vanishing sufficiently strongly at spatial infinity. Accordingly we shall consider
only a 4-current given by

J« = Sab.b, Sab=-Sba, (3.4)

where Sab(x, it) may be freely chosen except for the skew condition and the condition
of vanishing sufficiently fast at spatial infinity. Any J„ given by (3.4) automatically
satisfies (3.3).

The equation (3.2) now reads

= Sac,cb Sbc,ca , (3.5)

and we have the exact retarded potential solution as in (2.3)

Fab(X, iT) = — (47t)-1 / (Sac,cb - Sbe,J jX - xl"1 fa, (3.6)

where, after the indicated differentiations have been performed, we are to substitute
t — T — |X — x| as in (2.4).

For the distant field, we have as in (2.8)



158 J. L. SYNGE [Vol. XXVI, No. 2

lim (-4TrRFab(X, iT)) = $o4(k, r) = f (Sac.cb - Sbc,ca) d3x, (3.7)

where after differentiation we are to substitute, as in (2.7),

t = kcx, + r. (3.8)

The notation is as in Figs. 1 and 2.
Although we shall ultimately take a source of the type (2.13) (changed from scalar

to tensor), it is better at this point to be more general and take

Sab(x, it) = Aab(x)j(u), (3.9)

where Aab = — Aba and vanishes sufficiently rapidly at spatial infinity, and f(u) is an
arbitrary function of

u = t — k*x, — t* — — k*xa — r*. (3.10)

Here k* is the unit vector in the target direction, and the notation of (2.10) to (2.12)
will be used.

In order to calculate the integral (3.7), we have to differentiate Sab as indicated and
then make the substitution (3.8). This substitution means that we are to change u
into v, where, as in (2.16),

V = K„x„ + M = KaX« + M, (3.11)

since k4 = 0.
To bring out the essential features of the following argument, let vis suppress the

suffixes in (3.9) and write

S(x, it) = A(x)f(u). (3.12)

By (3.10) we have u„ = — k* , and so

S,„ = A<aj(u) — k*Af'(u), ^ ^

s.ab = A.M - ok*A.b + k*bA.a)f'(u) + k*ak*hj"{u).

To calculate an integral of the type (3.7), we are first to write in v instead of u in this
last expression. Then we note the following results of integration by parts, the function
A(x) vanishing sufficiently fast at spatial infinity (note that A,t = 0, and so a number
of terms vanish for that reason):

/ A,abj(v) d3x = — / A,aKbj'(v) dsx = / AKaK,J"(v) d3x,
(3.14)

J A,bf'(v) d3x = -/ AK„f"(v) d3(x).

We have used the fact that v.a = k„ . It follows then that

/ (<S.ai)«w, d3x

= (ka + Kakf + Khk* + k*k%) f Af"(v) d3x = kX J Af"(v) d3x, (3.15)

since k0 + 7c* = ka .
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Applying this to (3.7) with Sab as in (3.9), we get

3>a6(k, r) = kbkc J Aac(x)f"(i') d3x — kakc J Aicf"(v) d3x. (3.16)

We have now the distant field as in (3.7), and we can verify immediately that that field
is a null field in the sense that E — H and E H = 0. For it follows from (3.16) that
the principal part of the field satisfies

F abkb — 0, F*bkb — 0, (3.17)

F*b being the conjugate electromagnetic tensor, and these conditions tell us that the
field is null.

Finally, in order to get a jet of radiation in the direction k*, let us make the following
choice of the source-tensor:

Sab(x, it) = Aab(x)f(u),

•4ai>(x) = Bab exp (—//a), j(u) = cosuu, (3.18)

u = t — k\x, — t* = —k*xa — t*.

Here Bab( = —Bba) are constants. Then by (3.16) the distant field is given by

lim (-4irEFai(X, iT)) = <i>„,/k, r) = Cah cosu(r - r*), (3.19)

the tensor amplitude being

Cab = w{kakcBbc — kbkcBac)(airl/2)3 exp (-aVsin2 §0). (3.20)

The exponential factor suggests that we may obtain a concentrated jet of radiation by
making aw large. However there remains another factor dependent on the direction of
observation, and its effect must be explored. We shall pursue the investigation in terms
of flux of energy, which is more interesting than amplitude.

The energy tensor is

T ab — FacFbc — SabFcdF cd/i, (3.21)

and the 3-vector representing flux of energy is

-iTai = -iF.cFic . (3.22)

Then by (3.19) the amount of energy passing through solid angle cK2 on a large sphere
in time dT(= dr) is

—i(16ir2)-1 ka^ac^ic dQ dr, (3.23)

k„ being the unit normal to the sphere. The time-average of the flux is then

-i(32ir2rXCacCic d£i. (3.24)

Define

Dab = kakcBbe — kbkcBac . (3.25)

Then, since Bab is skew and lca is null,

DacDbc = kJx,bBcvBCQkpka . (3.26)
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Hence, since fc4 = i,

k„DacDic = iB CVB cakvka . (3.27)

Applying this result to (3.24), we see that the time-average of flux is

a)4(327r2)~1 (ira2)3BcpBcakpka exp (-2oV sin2 %0) <20. (3.28)

So far we have left the constants Bah arbitrary except for skewness. If they happen to
be such that

BcvBcak*pk* = 0, (3.29)

the flux (3.28) is zero in the target direction, and we do not have the desired jet, but
rather a jet with a hole in the middle.

To explore the question of appropriate choice of Bab , let us define

G = BepBcakpka , G* = BcpBcqk%k* , (3.30)
so that, to avoid a hole in the middle of the jet, we seek to have G* ^ 0. Rotate the
coordinate axes so that Ox3 points in the target direction; then

k* = k* = 0, k$ = 1, k* = i, (3.31)
and (3.30) gives

G* = (B13 + iBu)2 + (B23 + iB24)2. (3.32)

It is clear that we have a wide choice. Let us take a simple one:

Bab = 0 except Bit = —Bt, = —iP, (3.33)

where P is some positive constant. This makes G* = P2 ^ 0, as required. Then (3.30)
gives

G = BlpBlQkpkQ + BipBiQkpkQ = P2(l — fc,) = P2( 1 — sin2 6 cos2 <f>) (3.34)

in terms of spherical polar angles. By (3.28) we have then for the time-average of
energy flux per unit solid angle in the direction (6, </>)

oj4(327r2)~1('7ra2)3P2(l — sin2 0 cos2 <f>) exp ( — 2a2a>2 sin2 IB). (3.35)

If we define the directivity D as the ratio of the target value of this (viz., for 6 = 0)
to its mean value over the unit sphere, we get, as principal part for large a to,

D = 2a V (3.36)
[cf. (2.19), (2.28)].

To find the 4-current </„ which generates this jet, we have by (3.4) and (3.18)

Ja = Sai,b = Aat.tf(u) - Aabk\'f(u), (3.37)
where Aat = 0 except, by (3.18) and (3.33),

An = — A4i = — iP exp (—r/a), (3.38)
and fc* is as in (3.31). Thus the 3-current is

J i = — iA, 4/' (u) = uP exp ( — r2/a~) sin cow,
(3.39)

J 2 — J 3 = 0,
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and the charge density is

P = —iJi = —iAiUij(u) = —2P(x,/a2) exp ( — r2/a2) cos com. (3.40)

The total charge is zero, as is in fact implied by (3.4) combined with the vanishing
of Sab at spatial infinity. In these formulae, u is as in (3.18).

4. Gravitational radiation. We work in the linearised form of Einstein's general
relativity. The field is weak in the sense that the metric tensor may be written

Q ab &ab "l- "Yob j

where the 7's and their derivatives are small and quadratic terms are in consequence
dropped. The validity of this approximation is open to question if very high frequencies
are involved, but this matter will not be further discussed here. We shall simply accept
the linear approximation as is usually done.

Actually the metric tensor will not appear in the work. Instead, the Riemann tensor
will be used. This has two advantages. First, the Riemann tensor is the core of a gravita-
tional field, vanishing if and only if the field vanishes. Second, we do not have to con-
sider infinitesimal coordinate transformations, since any such transformation produces
only a second order change in the Riemann tensor, which is already small of the first
order.

The Riemann tensor RabCd satisfies the symmetry conditions

Robed Redab Rbacd j Rabed I Raedb [ Radbe 0, (4.1)

and also the Bianchi identities, which read, in the linearised theory,

Rabed.e Rabde.e ~t~ Rabee.d = 0. (4.2)

Differentiation of this last equation with respect to x, gives

Rabcd.ee " 'Rabde ce Rabec de ' (4.B)

By use of (4.1) and (4.2), it is not hard to reduce this equation to

I—1-^abcd R ad .be I Rbc.ad Rae.bd Rbd.ac J (4.4)

where

Rab Rcabc t (4.5)

the linearised form of the Ricci tensor.
So far there is no mention of the field equations. We have in (4.4) merely an identity

in the linearised geometry of any Riemannian space.
The accurate form of Einstein's field equations is

Ha b i(JabR = 8 irTab (4-6)

in units making the gravitational constant and the speed of light both unity. Here
Tab is the energy tensor. In linearised form (4.6) may be written

Rab = Sir(Tab |5atTcc). (4.7)

Substituting (4.7) in (4.4), we get our basic differential equation, by which the
Riemann tensor is generated from a source represented by the energy tensor:

I \Rahed ~ %T[£i'abCdTVq,r, (4.8)
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where the S-iudex symbol is a combination of Kronecker deltas, easy to write out ex-
plicitly but rather complicated.

Since the covariant divergence of the left-hand side of (4.6) vanishes identically,
Tab satisfies an equation which in general involves the metric tensor. But in the linearised
theory this constraint reduces to

TaKh = 0. (4.9)

Thus, as in the electromagnetic case, Ave have a source subject to a constraint. As in
that case, it is more convenient to use a free source, and so we shall introduce (this
is a well-known device) a tensor Salcd which may be freely chosen except for conditions
of vanishing sufficiently rapidly at spatial infinity and the symmetry conditions

Scibcd ~ Scdab ~ Sfcaci . (4.10)

We shall restrict ourselves to energy tensors of the form

Tab — SacM.ed . (4-11)

This is symmetric in (a, b) and automatically satisfies the constraint (4.9).
Substituting from (4.11), we obtain from (4.8) the equation

Offa&ci = ,u„r, . (4.12)

This is analogous to (2.1) and (3.5), and may be treated similarly. Thus instead of
(2.8) we now have for the distant field

lim (} |X] Rabcd(X, iT)) = *„Uk, r) (4.13)
where

3\,6crf(k, r) = KIZ f Smav,uvr. d3x, (4.14)

with integration over all space, the substitution

t = k,x, + r (4.15)

being made in the integrand after differentiation and before integration.
To get a jet in the direction k*, we follow the pattern of the preceding section,

taking

SmQV(x, it) = Amt,(x)f(u), u = t - k*xa — r* = — k*xa — r*, (4.16)

so that u,a — — k* . The A-tensor is to have the symmetries (4.10) and vanish suffi-
ciently rapidly at spatial infinity. To prepare the integrand in (4.14), we are to dif-
ferentiate four times and then substitute v for u, where

v = Kaxa + x-a = ka — k* , m = r — t*. (4.17)

This situation is an elaboration of that discussed at (3.12) and the same plan may be
followed, viz., integration by parts. Thus we obtain, as analogue of (3.16),

d(k, r) = AVal7dKkJcrk. J ^r„„(x)/<4)(v) d,x. (4.18)

It remains only to make special choice of the A-tensor and the function /. Follow-
ing the precedents, we set
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Aalei(x) - Babcd exp ( — r2/a), f(u) = cos com, (4.19)

where the 5-tensor is constant with the symmetries (4.10). Then the distant field is
given by (4.13) with

3\>bcd(k, r) = w4(a7r1)3ApalrcdB„ua,kukvkrks exp ( — aV sin2 §0) cosw(r — r*), (4.20)

6 being as always the angle between observation and target. To get a jet we are to take
aw large.

It will be noted that for all three types of disturbance—scalar, electromagnetic,
gravitational—the jet is obtained by essentially the same method: the source consists
of simple harmonic plane waves travelling towards the target with the fundamental
speed of propagation and with wave length small compared with the size of the domain
of the disturbance (a/X large). The assumption that the amplitude of these waves falls
off exponentially like exp ( —r2/a2) is probably not essential to the result; it is rather
a device to make the calculations easy to carry out.

5. Shock-jets. Let us now see whether it is possible to obtain a jet without the
use of a high-frequency source. In this connection I am much indebted to Mr. R. G.
Medhurst for correspondence about the theory of supergain in electromagnetic aerial
arrays as developed by Bloch, Medhurst and Pool [3], [4] (the second reference contains
a bibliography). Their work is oriented towards the practical design of arrays and
differs greatly in point of view from the present paper. However, it appears that super-
gain is attainable without recourse to high frequency, and this raises the question as to
whether high frequency is essential to the production of jets of radiation when discussed
in terms of field theory in the manner of the present paper. It will now be shown that
jets can be obtained from a source which has no frequency at all, but consists of a single
shock wave.

For purposes of illustration, only a scalar field will be considered.
Let us return to (2.9) and note that, by introducing the Dirac 5-function, we may

write that equation in the form

$(k, r) = J S(x, it) 8(t — kax, — r) d4x, (5.1)

the integration being now over all space-time. For source let us take

S(x, it) — exp (—r2/a2) S(t — k*„x„ — r*), (5.2)

k* being as earlier the unit vector in the target direction and r* a constant. We are to
substitute (5.2) in (5.1) and carry out a fourfold integration. But, by a known formula
for 5-functions,

J 5(t - k,x, - r) &(t - k*x, - t*) dt = S(a. + u), (5.3)

in the notation of (2.11) and (2.16). Thus (5.1) becomes

$(k, r) = J exp (-r /a) 8{k„x, + /i) d3x. (5.4)

Suppose now that k = 0, which means that observation is made in the target direc-
tion. We get

$(k*, r) = (a7T1/2)3 S(t - T*), (5.5)
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which means that an infinite disturbance arrives at time T corresponding to the retarded
time t*.

On the other hand, if k ^ 0, we can rotate the axes so that one axis points in the
direction of k„ , and then we have

fI>(k, r) = (an'2)1 J exp (—x2/a2) <5(k.t + /n) dx = (ax172)2*-1 exp (—k~2cT2ii). (5.6)

This expression is finite, and so, comparing it with (5.5), we see that we have a con-
centrated jet in the target direction.

We may assess directivity here by calculating the integral

We find, since /u = r

/(k) = / [*(k, t)]s dr. (5.7)

/(k) = (a7r,/2)V7\/2, Gr>.8)

which tends to infinity like «-1 as we make the direction of observation k approach
the target direction k*.

6. Cautionary remarks. No mathematical model represents physical reality per-
fectly, and reasonable caution is always required in the application of mathematical
formulae. However, some special cautionary remarks about the preceding results are
advisable.

We have been concerned essentially with linear field theory. Thus, although the
equations of hydrodynamics are nonlinear, we have supposed those equations linearised
in dealing with jets of sound. Such linearisation is a standard procedure. It is based
on the assumption that the field variables and their derivatives are all small of the
same order. The validity of this procedure becomes dubious when high frequencies are
involved, and it is certainly not permissible to imagine the frequency tending to infinity.
Thus, while it is possible, by increasing the frequency, to obtain in the mathematical
model a jet of any desired degree of concentration, a practical limit is imposed by the
requirement of remaining within the linear theory. No attempt is made here to assess
what the limit is.

The above difficulty about linearisation does not arise in the case of electromagnetic
radiation based on Maxwell's equations, because those equations are linear. But it
does arise in the case of gravitational waves because we are using the linearised form
of a nonlinear theory. Here also excessively high frequency may carry us out of the
domain of validity of the linear theory.

There is also another warning in the case of gravitational waves. This arises from
the physical fact that density cannot be negative. In the above work, in which imaginary
time is used, density is represented by —Ti4t . Now when we combine (4.11) with
the assumption that Sabcd = 0 at spatial infinity, we find that T44 cannot have a single
sign everywhere. In fact, the source has negative density somewhere, and this is not
permissible. The wyay out of this difficulty is to think of the field in question as super-
imposed on some given statical field, weak enough to fit into the linearised theory but
strong enough to balance the negative density arising from (4.11). Once again, however,
high frequencies are dangerous, not merely because they may carry us out of the domain
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of the linearised theory, but because they may give rise to densities too large and
negative to be compensated by the background statical field.

As for Sec. 5, the use of the 5-function in (5.1) is above reproach, for this is merely
an equivalent way of writing the retarded potential integral (2.9). But the 5-function
in (5.2) is a very different matter, for here we contemplate a source which takes infinite
values. Thus the results of Sec. 5 need a commonsense interpretation before they
are applied to actual physical situations.

References
[1] J. L. Synge, Relativity: the special theory, North-Holland, Amsterdam, 1965
[2] J. L. Synge, Relativity: the general theory, North-Holland, Amsterdam, 1964
[3] A. Bloch, R. G. Medhurst and S. D. Pool, A new approach to the design of super-directive aerial arrays,

Proc. IEE (London) 100, 303-314 (1953)
[4] A. Bloch, R. G. Medhurst and S. D. Pool, Superdirectivity, Proc. IRE 48, June (1960)


