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THE CORRESPONDENCE PRINCIPLE OF LINEAR VISCOELASTICITY THEORY
FOR MIXED BOUNDARY VALUE PROBLEMS INVOLVING

TIME-DEPENDENT BOUNDARY REGIONS*

G. A. C. GRAHAM**
North Carolina State University

1. Introduction. The classical method of .solving boundary value problems in the
linear quasi-static theory of viscoelasticity is to apply an integral transform (with respect
to time) to the time-dependent field equations and boundary conditions. The trans-
formed field equations then have the same form as the field equations of elasticity
theory and if a solution to these, which is compatible with the transformed boundary
conditions, can be found then the solution to the original problem is reduced to transform
inversion. This method of solving viscoelastic stress analysis problems is referred to as
the "correspondence principle".

The correspondence principle is clearly applicable whenever the type of boundary
condition prescribed is the same at all points of the boundary. For mixed boundary value
problems (i.e., problems for which different field quantities are prescribed over separate
parts of the boundary) the method is still applicable provided the regions over which
different types of boundary conditions are given do not vary with time. (We are, of
course, assuming that the region occupied by the body does not vary with time.) There
remain those viscoelastic mixed boundary value problems where the regions, over which
different types of boundary conditions are given, do vary with time. Particular examples
are indentation and crack propagation problems. For problems of this type there will
be points of the boundary at which only partial histories of some field quantities will
be prescribed. When this is the case the transforms of these quantities are not directly
obtainable and the classical correspondence principle is not applicable.

Following a statement of the fundamental field equations of linear thermo-viscoelas-
ticity theory and the correspondence principle in Sec. 2, we give in Sec. 3 of this paper
a method of calculating the transforms of the solutions to a fairly wide class of linear
thermo-viscoelastic mixed boundary value problems. In Sec. 4 the method is used to
derive the solution to a viscoelastic contact problem whose solution was previously
obtained by a different method.

2. Formulation of boundary value problems, the correspondence principle. Consider
a fixed region (R with boundary (53, which is occupied by a homogeneous and isotropic
linear viscoelastic material. Let «,• , and <ju , each of which is to be regarded as a
function of position x and nonnegative time t, denote the Cartesian components of
displacement, strain and stress respectively. Employing the usual indicial notation
the strain displacement relations and the stress equations of equilibrium for zero body

'Received November 25, 1966; revised manuscript received March 28, 1967. This work was
sponsored jointly by AFOSR, ARO and ONR through the Joint Services Advisory Group under
Contract No. AF-AFOSR-444-66 with the Applied Mathematics Research Group, North Carolina
State University.

**Present address: Simon Fraser University, Burnaby 2, B. C., Canada.



168 G. A. C. GRAHAM [Vol. XXVI, No. 2

force1 take the form

2e,-;(x, t) = t) + wy,i(x, t), (1)

t) = 0, 0 = o-f<(x, «)• (2)

In stating the accompanying constitutive equations we confine our attention to the
relaxation integral law. To this end, let T be the temperature and define the "pseudo-
temperature" 6 through

6(x, t) = - r(I'° a(T>) dT', «„ = «(T„). (3)
«0 J T0

Here T0 is the uniform "base temperature" of the body and a is the temperature de-
pendent coefficient of thermal expansion. We denote by Gx and G2 the relaxation functions
in shear and isotropic compression respectively, measured at T0 ■ With these agreements
the stress-strain relations take the form

s,-,(x, t) = <?,({>,-,(x, 0) + f Gi(t - t') jp eti(x, V) dt', (a)Jo dt (4)

<Tkk{x, t) = G2(t)[ekk(x, 0) - 3a0e(x, 0]

+ £ G2(t - t') [ew(x, V) - 3a06(x, t')] dt', (b)

where e,-,- and s,-,- denote the deviatoric components of strain and stress which are defined
through

ea(x, t) = €,.,(x, 0-3 fkk(x, t), (a) ^

s;i(x, 0 = ai;(x, t) - \ 5,,-<r„(x, t), (b)

in which 5,, is Kronecker's delta. We shall use the notation

/*(x, p) = £{/(x, 0; t~*v\ = [ /(x, t)e~" dt (6)

for the Laplace transform with respect to time of a function2 /(x, t). Assuming that all
the pertinent functions possess Laplace transforms we find by invoking the appropriate
convolution and differentiation theorems (e.g., see Sneddon [1]) and by applying the
Laplace transform to Eqs. (1), (2), (4) that

2ef,(x, p) = m*,(x, p) + uf,i(x, p), (7)

°-*,;(x, p) = 0, <x*-(x, p) = o-*,(x, p), (8)

sf,(x,. p) = pGt(p)e*(x, p), (a) ^

of,(x, p) = pG%(p)[eft(x, p) - 3a06*(x, p)]. (b)

We will denote by w„ and u, (<r„ and o-,) the vector components of the displacement

'The considerations of this and the next section may be generalized in a straightforward manner
to accommodate nonzero body force.

2The same notation will be used to denote the transform of a vector valued function, with the
agreement that it represents the vector whose components are the transforms of the components of
the original vector.
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vector (traction vector) normal and tangential to 03 respectively. Thus un , u„ , <r„ , a,
are vector valued functions of both x and t which are defined for all (x, t) on ffi X [0, <*>).
Suppose that a, b, c are the elements of any column of the matrix

0", c. cr„ u, u, u„ un

un <xn u, (J, a„ un <7s u„

<jn Un <7. U. U„ a, U, a.

(10)

Consider the problem of finding a solution to the system of Eqs. (1), (2), (4) which
meets the boundary conditions3

a(x, t) = A(x, t), x on ffi, (a) ^

b(x, t) = B(x, t), x on ®. (b)

Here A and B are vector valued functions which are given for all nonnegative times
at each point x of ®. Thus we may apply the Laplace transform to (11) and obtain

a*(x, p) = A*(x, p), x on ®, (a) ^

b*(x, p) = B*(x,p), x on ®. (b)

Equations (7)-(9) together with (12) now determine an elastic stress analysis prob-
lem in which the elastic constants and boundary values are functions of the param-
eter p. If this can be solved, [t<*-(x, p), e,^(x, p), o\*(x, p)] is the transform of the solution
to the original viscoelastic problem and inversion to give [Mi(x, t), e;,(x, t), <r,',(x, <)]
provides the desired viscoelastic solution. This problem solving technique is known as
the "correspondence principle" and is described in Sternberg's survey article [2], to
which reference should be made for a comprehensive treatment of the material of this
section.

3. Extension of the correspondence principle. Consider now the boundary value
problem governed by Eqs. (1), (2), (4) together with the boundary conditions4

a(x, t) = A(x, t), x on ffi, (a)

b(x, t) = B(x, t), x on ®i(<), (b) (13)

c(x, 0=0, x on ffi2(0, (c)

where A and B are prescribed vector valued functions5. Here ffij and ®2 designate time-
dependent complementary sub regions of the boundary ffi so that ffi^f) VJ ®2(i) = ®
at each nonnegative time. When ffij and ffi2 vary with time it is easy to see that there
will be points x of ffi for which neither b(x, t) nor c(x, t) are known for all nonnegative
times. In this case the correspondence principle is not applicable as a method of solution
since the required Laplace transforms of the boundary conditions are not obtainable.

Consider, however, the one parameter family of static thermoelastic boundary
value problems6 governed by the boundary conditions (13) together with the field

3We consider the "pseudo-temperature" 0 to be given.
'Ibid. 3.
6It is to be emphasized that the vector valued function B appearing here is only defined for those

(x. t) which belong to the set {(x, t) | 0 < t < <», x c
6The parameter is t.
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equations (1), (2) and

s(,(x, t) = 2Me„(x, t), (a) ^

<rtt(x, «) = 3«[ett(x, t) ~ 3ao0(x, 0], (b)

where n and k are constants standing for shear and bulk modulus respectively. Suppose
that the solutions to these problems, which we denote by [u'(x, t), e',(x, t), cr',(x, <)],
are such that

b'(x, t) = B'(x, t), x on (B, (15)

c'(x, t) = k(jx, k)C\x, t), x on ffi, (16)

where the vector functions B' and C" are each independent of the elastic constants
n and k while k is a function of these constants alone7. Since the boundary conditions
(13) are satisfied we have

B'(x, t) = B(x, t), x on ®!(Z), (17)

C,(x, 0 = 0, x on ®2(<). (18)

Consider now the thermo-viscoelastic boundary value problem governed by the
Eqs. (1), (2), (4) together with the boundary conditions (13a) and

6(x, t) = B'(x, t), x on ffi. (19)

Since both A and B' are given for all nonnegative times t at each point x of ® we may
apply the Laplace transform to (13a) and (19) and find

a*(x,p) = A*{x,p), x on <33, (a)

b*(x,p) =Be*(x,p), x on (B. (b)

Comparing the system of Eqs. (20) and (7)-(9) with (20) and the Laplace transforms
of (1), (2) and (14) we see that for the problem now under consideration8

[uf(x, p), e* (x, p), <r*(x, p)]

= j[«?(x, p), e"*.(x, p), a'*,(x, p)];m = 2 G*(p)> K = I g*(p)|. (21)

By taking the Laplace transform of (16) we see that

ce*(x,p) = /c(m, k)C'*(x, p), x on ®, (22)

which by virtue of (21) implies that for the thermo-viscoelastic displacement-stress
field meeting the boundary conditions (13a) and (19)

c*(x,p) = fc(|G1(p),|Gt(p))ce*(x,p), x on ffi. (23)

Inverting (23) we find that9

'These conditions must be met for the extended correspondence principle given here to be valid.
An example where they are met is given in the next section. For other examples see [3],

8This is a direct application of the correspondence principle.
9Equation (24) remains valid if the roles of K and C" are interchanged.
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c(x, t) = K(t)C\x, 0) + f K(t - V) ~~7 [C'(x, t')] dt',

where10

Kit) = £"

x on ®, (24)

(25)

We will now turn our attention to the particular circumstances that ®j(i) is monotonic
increasing with time. Thus if and t2 are any two nonnegative times such that tx < t2
then ®i(<i) C ffii(f2)n. On substituting from (18) into (24) it is found that in these
circumstances c(x, t) as it is defined through (24) satisfies the condition12.

c(x, 0=0) x on ®2(t). (26)

Thus provided (Bi (/) is monotonic increasing with t and the requirements of (15) and (16)
are satisfied we have by virtue of (17) and (26) that the Laplace transform of the required
viscoelastic field meeting the boundary conditions (13) is given by (21). It is worth
emphasizing, and may be seen from an examination of Eq. (24), that if in (13) the
vector function c is prescribed to be nonzero on ®2(0 then the considerations of this
section do not, in general, supply us with the Laplace transform of the required visco-
elastic solution.

The correspondence principle described in the previous section admits straight-
forward generalization to anisotropic and inhomogeneous materials (for a list of references
see [2]). It is a simple matter to verify that this generalized correspondence principle
is capable of an extension, in complete analogy to that given in this section, to the
correspondence principle for homogeneous and isotropic bodies13.

4. An Example. We will now give an example to illustrate the use of the extended
correspondence principle obtained in the previous section. Suppose that, in terms of
circular cylindrical co-ordinates (p, 6, z), the region (R is the half space z > 0
with boundary ® given by the plane 2 = 0. We consider the axisymmetric problem
governed by the following boundary conditions:

api(p, o, t) = (TeXp, o, t) = 0, P > 0, (a)

u,(p, 0, t) = D{t) - ftp), 0 < P < a(t), (b) (27)
<r„(p, 0, t) = 0 p > a(t), (c)

where the field quantities are independent of 6. These boundary conditions have the
same form as (13), corresponding to the special circumstances in which the quantities
a, b, c are chosen from the first column of (10). The region is now that part of

10Here and subsequently the notation £_I indicates that we take the inverse Laplace transform.
"Since ©i(I) W ®2(<) = ®, the requirement that is monotonic increasing with time is equivalent

to the requirement that ®2(0 is monotonic decreasing with time; i.e. that 0 < h < ti implies ®2(<i) 2
(B2U2).

"It is easy to see that if ffii(t) is not monotonic increasing with time then c(x, t) as it is defined
through (24) will not in general satisfy (26).

13The application of this extension of the correspondence principle to the solution of practical
problems would of course depend on the availability of a family of solutions [u', e®<r';] to the field
equations of anisotropic and inhomogeneous elastostatics which met the boundary conditions (13) and
satisfied requirements analogous to those of (15), (16).
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the plane z = 0 for which 0 < p < a(t), while (S2(t) is the part of z = 0 for which p > a(t).
In accordance with the conditions of the extended correspondence principle given in
the previous section we will restrict ourselves to the particular circumstances that
®](0 is monotone increasing with time so that a(t) is a monotone increasing function
of time. We assume that the function 0(p) appearing in (27b) is at least once continuously
differentiate and that its derivative is never negative. The boundary conditions (27)
then correspond to the physical circumstances of an axisymmetric punch of curved
profile being pressed against the surface of a viscoelastic half space in such a way that
the radius of the circular area of contact is monotone increasing with time.

If we can find a solution to the system of eqs. (1), (2) and (14) which satisfies the
conditions (27) then the corresponding viscoelastic solution meeting (1), (2), (4) and (27)
will be given through (21) provided the requirements of (15), (16) are satisfied. From
here on we will assume that the pseudo-temperature is identically zero so that14

0(x, 0=0, x on (R, t > 0. (28)
In this instance the solution to the elastic problem governed by the field equations
(1), (2), (14) and the boundaiy conditions (27) is given by Sneddon [4], Adapting that
solution to our notation we find in particular that16

t OA — + 3k) d_ r(<) yg(y, t) dy , .
"Up, 0, ) (3k + ^)p dp Jf ^ _ p2 }1/2 , 0 < P < a(t), (29)

where

g(y, t)=l {z)(0 - y £ (30)
Since the punch is assumed to have a curved profile, D is related to a(t') through the
equation

D{t) = a(t) r ,2(.f/dp2iW2 dp. (31)
Jo J a ({) — p !

Further we have that outside the area of contact the normal displacement of the surface
of the half space is given by

„ ( n A - ["U) g(y' Q dy ^ n(f\ auz(p, 0, I) — / ,2 211/2 , p > a(t). (32)
J o I p — y \

Since the elastic constants are absent from (32) and appear in a separate factor
in (29) the requirements of (15), (16) are satisfied and the extension of the correspondence
principle obtained in the previous section is applicable. Thus we find that for the
viscoelastic boundary value problem16 determined by (1), (2), (4) and (27) the normal
displacement outside the contact area is given by (32), where g is given by (30) and D
is related to a(t) through (31), provided only that a(t) remains a monotonic increasing
function of time. By combining (24) and (25) with (27c) and (29) we find that

o, t) = K(t)e(P, 0) + f K{t - V) — [e(p, <')] dt', (33)

»Cf. 3.
15Formulas for the stresses and displacements obtaining in the interior of the half space are given

in [1],
"Recall that 6 satisfies (28).
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where17

e(Pl l) - H(a('> ~ "> f ["" »(»-'{% (34)
P «P (2/ - P !

and where K is given by

G*(,p)(G*i(p) + 2G%(p)) . |
L 2(2G*(p) + G*(p)) ' P 1 V ;4K(<) = JG"1

The total pressure acting on the punch is given by

P{t) = —2x f p<tiz(p, 0, 0 tfp. (36)
Jo

Substituting from (33) and (34) into (36) we find that

P(t) = K(t)<P(0) + fQ K(t - O ^7 [CP(0] dt', (37)

where

(P(0 = 2ir f g(y, t) dy. (38)
Jo

If we take 0(p) = p~/'2R, where R is a constant, the solution given here reduces
to that which was originally given by Lee and Radok [5] for the problem of a viscoelastic
half space against whose surface is pressed a rigid paraboloid of revolution. Subsequently
this solution was rederived, using dual integral equations, by Hunter [6]. In [7] it was
shown by the present author that the solution given in [5], [6] is a special case of a
relation of the type of (33) between the solution to a viscoelastic contact problem for
a punch of arbitrary smooth profile and the solution to the corresponding one parameter
family of elastic contact problems.

The general approach of each of these solutions is to find a pressure distribution
which vanishes outside the contact area, i.e., satisfies (27c), and which when taken
together with (27a) determines a viscoelastic solution for which (27b) is satisfied. In
terms of the boundary conditions (13) the approach takes the form of finding c(x, t),
x on ffii(0 which, when taken together with (13a) and (13c), determines a viscoelastic
solution which satisfies (13b). What we have done in this paper is to derive conditions,
in terms of a one parameter family of static elastic solutions meeting (13), which are
sufficient to ensure that the viscoelastic problem determined by (13) may be reduced
to one to which the correspondence principle may be applied. When these conditions
are met it is found that, for the viscoelastic problem determined by the conditions (13),
b(x, t), x on ®!(<), has the same values as those computed from the static elastic analysis,
while c(x, t), x on ®i(<), is generated by the formula (24).
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