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DYNAMIC DEFORMATION OF AXIALLY SYMMETRIC ELASTIC MEMBRANES*

BY

R. W. DICKEY

University of Wisconsin

1. Introduction. The purpose of this paper is to discuss the dynamic behavior of
various axially symmetric membranes, and in particular to find explicit solutions where
possible, and numerical solutions where this not feasible.

In Sec. 2 of this paper dynamic equations are derived following the development
in [1]. Thus the equations are formulated in Lagrange coordinates and the boundary
conditions are taken on the known unstrained body. These equations are in general
a pair of nonlinear wave equations with four characteristic directions. However, the
possibility exists that these characteristics may become imaginary and the physical
implications of this possibility are discussed.

One feature that recurs in the membrane approximation is the surprising difficulty
of solving problems with small deformations. For example, in [2] great difficulty was
encountered in finding numerical solutions for the slightly extended cylindrical membrane,
while solutions for large extensions were found with relative ease. This phenomenon
also occurs if a perturbation of the equations about an unstressed state is attempted.
In this case a high order space derivative is lost from the equations and with it the
ability to satisfy the prescribed boundary conditions. Corneliussen and Shield [3] cir-
cumvented this difficulty by considering a circular cylindrical membrane which was
extended and inflated in such a way that the stressed state was again a circular cylinder.
Linearizing the equations about this known finite deformation it is possible to find
small amplitude vibrations. In Sec. 3 of this paper we develop a procedure to study
the motion of pre-stressed membranes of Mooney and classical materials. Here two
approaches are used: (1) a solution is found which is valid for small time (with no re-
striction on the magnitude of the deflections) and (2) a numerical solution is obtained
for the exact equations.

2. The equations of motion. The physical situation to be considered is shown in
Fig. 2.1. An axially symmetric elastic surface generated by rotating a curve x = xn(s),
r = r0(s) (s is arc-length) about the x axis is in an unstrained state at time t = 0. For
I > 0 the surface is assumed to deform into another surface of revolution determined
by x = x(s, <), r = r(s, t)\ thus s is a so-called Lagrangian parameter such that x =
x0(s, 0), r = r0(s, 0) characterizes the initial position.

The strain is defined to be the ratio of the change in length of a line element to its
original length. With this definition the strain ta in the axial direction is given by

= ((dx2 + dr2)U2 - ds)/ds = (x'2 + r'2)1/2 - 1, (2.1)

and the strain tc in the circumferential direction by

ec = (r dd — r0 dd)/r0 dd = r/r0 — 1. (2.2)
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Fig. 2.1

The prime denotes differentiation with respect to the parameter s.
Elastic bodies are characterized here by the existence of a function W = W(ta , «c).

The function W(ea , tc) is defined with respect to the undeformed body such that the
potential (strain) energy of any state of deformation is given by

JJJ W(ea , ec) dv, (2.3)
V

V being the undeformed, unstrained body. Since the membrane approximation assumes
the strains to be constant through the thickness h, assumed uniform, and in addition
axial symmetry has been required, the integral (2.3) can be written as

2irh [ W(e0 , ec)r0 ds. (2.4)
J o

The kinetic energy of an element of the deformed body is

(p/2)(®? + rj) dv,
p being the density of the deformed volume element dv. Since mass is conserved, it
follows that

p dv = p dv
where p is the density of the unstrained body (assumed constant). Thus the kinetic
energy of the body is

III 2 ̂  + dv' (2-r))
V

Again it is possible to perform two of the integrations in (2.5) to obtain

2tt/i ~ (x\ + r2t)r0 ds. (2.6)

Hamilton's principle requires that the membrane move so that

2irh fo fo {2 ~ ' e^}r° dt (2.7)
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is stationary. Thus the Euler equations (cf. [4]) for (2.7) become the equations of motion
for the membrane. After substitution for and ec from (2.1) and (2.2) these Euler
equations are easily found to be

pr°x" = fa ((x12 + r'2y/2 ^ (2.8a)

" I ((/'TFT' "'••) " w" ■ (2'8b)
These nonlinear partial differential equations have the form of nonlinear wave

equations. Since initial value problems associated with them are to be treated, it is
important to study their characteristics—in particular, it is desirable that the character-
istics should be real (otherwise, the initial value problem would not be well posed, see
[5, Chapter V] on hyperbolic equations). The characteristics are obtained from the
following differential equation (see [5, pp. 171 ff.]):

2j.a
p <Pt

WIT7' _|  11-ls
t a (a I / /2 ( /2\ 1/2

WWW. + '4 4t = 0. (2.9)/ rz , /2\ 1/2 N[x + r ) J
The equation may be factored to find the characteristic slopes

(ds/dt)2 = TF,0<„/p (2.10)
and

(ds\ W„
\dt) ~ p{x'2 + r"T2' (2'U)

Thus the question of the hyperbolicity of (2.8) depends on the nature of the strain
energy density function W. For infinitesimal strains the strain energy density function
for many materials would have the form of the classical strain energy density function

W = | («. + O2 + m(4 + $ (2.12)

as a limit case, with \ and /i the two Lame constants. In this case the partial derivatives
of W occurring in (2.10) and (2.11) are

Wfm = (X + 2 n)(ea + ec), W = X + 2p. (2.13)
Thus the right hand side of (2.10) is always positive in this case. The right hand side
of (2.11) is positive only if Wta > 0, and this in turn will hold only if e„ + ec > 0. Since
it is reasonable to expect the strain energy to increase as the strains increase, it will be
assumed that W„ > 0 if the strains are positive. Thus Eqs. (2.8) are hyperbolic when
the membrane is in tension.

The fact that Eqs. (2.8) may change type (cf. [6]) causes difficulty. For example,
on physical grounds the initial boundary value problem seems a reasonable problem
to impose on (2.8), i.e. an initial unstrained state is specified:

r(s, 0) = r0(s), r,(s, 0) = 0, ^ ^

x(s, 0) = x0(s), x,(s, 0) = 0,

with certain boundary conditions

r{0, t) = MO, r(s, , t) = /„(<), ^ 15^
x(0, t) = ^x(<), x(s, , t) = g2(t).
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A typical problem might be that the radii of the ends are fixed while the membrane
is extended, in which case (2.15) would become

r(0, t) = a, r{sf , t) = b, ^ ^

z(0, t) = gM, x(s, , t) = g2(t),

where a and b are the radii of the ends. Equation (2.14) corresponds to the unstrained
state, e„ = tc = 0 at t = 0. Thus by (2.11) and (2.13), the initial data are given on a
parabolic line (cf. [6]) of Eqs. (2.8). However, it will be assumed that no compressions
develop if the ends are pulled apart (i.e. that ea + ec is not negative).

The difficulties mentioned above may be avoided altogether if the surface is initially
in tension rather than unstrained. In this case Eqs. (2.8) are definitely hyperbolic and
the initial boundary value problem would be well posed. This approach was successfully
used by Corneliussen and Shield [3] and will also be employed in Sec. 3 of this paper.

3. The dynamic equations. For classical materials (2.12) the equations of motion
(2.8) become

_ d jf, , 0 > Xr j- 2(X + n)r0pr0x,t — i (X -f- 2/i)?'0II \»» | ■"A*/' 0 1 / / 2 | / 2\ 13s (L {x + r ) (3.1a)

A iU + 9 V 4- Xr ~ 2(X + ")r°
ds lL( m) 0 {x2 + r'2)l/2 .

+ 2(X + n) - (X + 2m) - - X(a;'2 + r'2)1/2. (3.1b)
To

In the context of the present paper it is also reasonable to consider material described
by the Mooney strain energy density function

W = C, («o + l)2 + (ec + l)2 +
(ea + 1) (ec + 1)2J

In this case Eqs. (2.8) become

d J K
pr0xt, = 2~s\r0x'\Gl ^ + C,

pr0r„ = 2 ys jror'^C1! + C-

+ C2 (e„ + l)2(ec + l)2 + 7 , , ,2 + , .
(e„ + 1) (ec +

1

f I)5]"

Jo (x'2 + r'2]1

r2 1
/ '2 , / 2\ 2(x + r )

-2[Cl+ «*'• +^-75^].

(3.2a)

(3.2b)

An infinite unstressed circular cylinder x0 = s, r0 — a may be put into a state of stress
by stretching each meridional arc-length element by an amount a while keeping the
radius fixed. In this state the cylinder is described by x = as, r = a. This is not an equi-
librium position for the membrane if no external pressure is applied; thus if initial
conditions

x(s, 0) = as, x,(s, 0) = 0, ^ 3)

r(s, 0) = a, r,(s, 0) = 0
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are prescribed the membrane is in motion at some time t > 0. This problem may be
solved explicitly with a solution of the form

x(s, t) = its, r(s, t) = aj(t) (3.4)

where /(0) = 1 and d](0)/dt = 0 to satisfy (3.3). If (3.4) is introduced into Eqs. (3.1)
the solution for classical materials is found to be

J(<r — 1)X
as, r — aS— , _— cos

i(
x_±_2/j,yt + -vfin- (3-5)X -(- 2 fi

The Eqs. (3.2) for Mooney materials reduce to the ordinary differential equation for /

If 2(C, + C2a2) a2f ~ 1 _ n
dt2 + pa2 a2 f

which does not lend itself to explicit solution because of its nonlinearity. It would be
reasonable to expect the solution for the infinite cylinder to be a good description of
the motion of a very long cylinder in its central portion.

For shorter cylinders this approximation is less valuable and it is necessary to in-
troduce different techniques. As indicated in the introduction the usual perturbation
methods fail, so that instead of searching for solutions valid for small deflections, a
method will be developed below to find solutions valid for small time. Thus, while a
perturbation technique attempts to find solutions valid for large time if the deflections
are small, the small time approximation attempts to find solutions which are valid for
large deflections if the time is small. To linearize the equations for small time the non-
linear coefficients are expanded in a power series in time. The coefficients of the various
terms in the power series may be evaluated from the initial conditions and the dif-
ferential equations. For small time the zero order term is assumed to be a good ap-
proximation and the prescribed initial boundary value problem is solved for these
linear equations. At the end of this section the small time solution is compared with the
numerical solution for the actual nonlinear equations, and very good agreement is
found for a surprisingly long time.

To simplify the notation for the small time linearization of (3.1) introduce new
variables

/ ^ | ^ 2(X -j- n)a , ,2 | /2\ 1/2 /o* - ~ ' *= (a: + r} • (3-6)

If the unstressed position of the membrane is a finite circular cylinder Eqs. (3.1) may
be written

| (^') = 0, (3.7a)

r,t - j itr') + r = ^ (3.7b)as pa pa pa

These equations are to be solved for a finite cylinder which is not initially in equilibrium,
i.e. the initial values (3.3) are prescribed and in addition boundary values

z(0, t) = 0, x(sf , t) = asf , ^ ^

r(0, t) = a, r(sf , t) = a.
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Assume the functions tp and <j> may be expanded in a power series of the form

t in{s)tn, <f> = X) <t>„(,s)tn,
n=0 n-0

at t = 0, = \p0(s) and </> = $0(s) or

i M — - _i_ Xr(s, 0) — 2(X + n)a
M > p + paix'is, 0)2 + r'(s, 0)2),/2

and

Us) = (z'(a, 0)2 + r'(s, 0)2)1/2.

Thus i^o(s) and <f>0(s) may be evaluated from the initial conditions (3.3). It is found that

yp0 = (& — 1)(X + 2p)/pa (3.9)

and

0o = c. (3.10)

For small time it will be assumed that ^ iAo(s) and 0 ^ <£0(s). Thus, replacing ^ and
<t> in Eqs. (3.7) by and <£0 , equations are obtained whose solutions are good for small
time. The resulting equations are

x„ - (°" ~ 1)(X + 2m) x" = 0, (3.11a)
PCT

ru _ ~ D(X + 2M) r„ + (X + 2/i) f = (2_- *)X + (3_nb)
pc pa pa

This same procedure may be carried through for Mooney materials (cf. (3.2)). The small
time equations are found to be

xtl - 2(Cl + C2)(1 ~ 1//<r ̂  x" = 0, (3.12a)
P

_ 2(C, + CQ(1 r_J./0 r„ 2(C, + C& f 2!&_+££.
p pa pa<7

A Fourier series solution of (3.11) for the initial boundary value problem (3.3) and (3.8)
is given by

4Xcr sin a„s cos /3„£ . c . nc _jcs (<r l)Xa .x = <rs, r = 2^ "To—|  Me + B e —  1- aa(X + 2m)tt JrS (2n + 1)y„ X +

where

. (2 n + IV
a„ = 

Sf

"X + 2m /1 , (2n + l)V2(<r - 1)
I 2 ~r

p (a OTSy

1/2

c 1 ( a \ (2n + 1)V 1 / Nl/2

" 2(X <• - e""")' B' - (esp (8's,) + "•
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Similarly the solution of (3.12) is

x = as,

r =
CO • M RM 4

Y, sin s cos P» + A " exp (SMs) + BM exp (- 8Ms) -A2 + a
(2 n + l)7f

where

ft" =
2

5" = -

A" = a{<7 — l)/2, a„ = (2n + 1)7r/s, ,

'2(0, + C2a2) 2(2n + 1)V(C, + C2)(</ - 1)"
2 ~T 4 2

pa po" S/

C, + C2cr2
L(c, + c2)(<74 - dj

m ,,¥• . (2n + 1) ir
7* = 5 +  -5 

sf

am = A2 (1 - exp (-5 sf)) bm = A (exp (8 g,) - 1)
2 sinh (5'WS/) ' 2 sinh (5,VS/)

Eqs. (3.1) and (3.2) were solved numerically for the initial boundary value problem
(3.3) and (3.8). First the indicated differentiations in (3.1) and (3.2) were performed
so that all derivatives appeared explicitly. The derivatives were then replaced by centered
difference quotients, i.e.,

/ 3/r» + l,n %m— 1 . ft / ^m + \,n ? m — 1 ,n

X 2 As ? 2 As

,, Xm+Un — 2xm,n + xm-Un ,, rm+1,„ — 2 rm,n +
As2 ' r As2

xm,n+1 — 2xm,n + xm,n-l rm,n+1 — 2 rm,n + 1
M2 , rlt ^ a<2

The resulting algebraic equations were then solved for and rm,„+1 . This is made
particularly easy by the fact that xtt and rtt appear linearly in the differential equations.
The values of xm,0 , rm,0 , xmA and rmil for 0 < m < m (if 0 < s < sf is divided into n
intervals) are determined from the initial conditions. Thus xm,0 = am As, r„,0 = a,
and xmA = xm,0 , rmxl — rm,0 for 0 < m < ju since x,(s, 0) = r,(s, 0) = 0. The values
of x0,„ , r0,„ and x„,n , r„,n are fixed by the boundary conditions (3.8). Thus x0,n = 0,
r0 = a, x„ ,n = <rsf , and rM,„ = a for all n > 0. It has been pointed out above that
previous authors have had difficulty in solving membrane problems for small strains.
The present situation is no exception. If a is close to 1 (i.e. small strains) the numerical
scheme does not converge unless At is chosen so small as to make the computing time
required prohibitive. However, as a increases it is possible to choose At larger and
larger and still have a convergent scheme. It was found that if the cylinder was stretched
to one and a half times its unstrained length, so that a = 1.5, it was possible to obtain
a convergent scheme, and at the same time choose At sufficiently large that it was pos-
sible to obtain numerical solutions for large t in a reasonable amount of computer time.
In fact, solutions were found up to the point of maximum deflection of the membrane.
At this point the velocity changes sign (the membrane ceases to fall and begins to rise);
this change in sign of the velocity definitely affects the convergence of the scheme and
the time required to integrate beyond this point is prohibitively large.
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t = 0

SMALLTIME SOLUTION (t = .5 )
ACTUAL (NUMERICAL) SOLUTION (t = .5)

STATIC SOLUTION (INFINITE CYLINDER)

0= 1.0
cr= 1.5
X = 1.1364
/x=4.5455

-j i i i i i_
Z .4 .6 .8 1.0 \.Z 1.4

Fig. 3.1. Classical materials

r

1.0

.4 .6 .8 1.0 1.2

Fig. 3.2. Mooney materials
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The numerical solution of (3.1) and (3.2) is shown in Fig. 3.1 and Fig. 3.2 with <j =
1.5. For classical materials X, n and p were chosen as X = 1.1364, n = 4.5445, and p = 1.
These values of X and y. are much smaller than they would be for a realistic material.
However, the magnitudes of X and n do not affect the form of the surface but only the
speed at which the surface reacts. The equations (3.2) for Mooney materials were
divided by C2 and the ratios C\/C2 and p/C2 were chosen as CJC2 = 9 and p/C2 = 1.
The same comments hold here as for classical materials. In Fig. 3.1 the membrane
reaches its maximum deflection at t = .5 and in Fig. 3.2 the maximum deflection occurs
at t = .2. In these figures the small time solution is compared to the actual numerical
solution. The agreement is seen to be very good throughout the total motion depicted,
in fact in Fig. 3.2 the small time solution and the numerical solution overlap at t = .1.
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