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PARAMETRIC ANALYSIS OF STATISTICAL COMMUNICATION NETS*

BY

H. Frank (University of California, Berkeley) aANp S. L. Hakimt (Northwestern University)

Abstract. The existing traffic within the branches of a communication net can
often be assumed to be normally distributed random variables. A natural problem
is to determine the probability that a particular flow rate between a pair of stations
can be attained. If this probability is too small, it is necessary to improve the net with
minimum cost. In this paper, analysis techniques on which effective synthesis procedures
can be based are developed. An exact method for evaluating the flow rate probability
is obtained as well as upper and lower bounds. Monte Carlo techniques are applied and
the flow rate is seen to be approximately normally distributed. A method of finding the
approximate mean and variance of the flow rate is given, as well as a Uniformly Most
Powerful Invariant Statistical test.

I. Introduction’. Let G be a communication network with » vertices v, v, ... v,,
and b branches b, , b, , - -+, b, . It is natural to assume that the existing flows or traffic
within the branches of G are random variables with possibly known probability dis-
tributions. Given a pair of stations »; and »; of G, we may want to determine the prob-
ability that a flow rate F.; of at least R units can be established between v; and v; .
When this probability (written Prob {F;; > R}) is found, it may be that it is too small
to meet the demands on the system. We must then increase the capacities of the branches
of G (with minimum cost) until a prespecified probability level p, is reached.

The problem of finding Prob {F,; > R} in the case where the joint probability density
of the network branch flow vector & is known has been solved by the authors [1]. There,
the authors give a solution which requires the inversion of a multidimensional charac-
teristic function. On the other hand, no information concerning the probability dis-
tributions of the branch flows may be available, but a set of n time observations of
these flows may be known. In this case, a Uniformly Most Powerful level a test for
testing the hypothesis

H, :p = Prob {F;; > R} > p, (1a)
against
H,:p < po (1b)

can be given [2]. Furthermore, if hypothesis H, is rejected, a procedure to increase the
branch capacities of G with minimum cost until H, is accepted is also developed in [2].
This synthesis procedure is optimum in several senses: it makes full use of the available
data, minimizes the probability of error, and minimizes total (linear) cost.

We can write Prob {F;; > R} in closed form when the density of § is known [1].

*Received September 26, 1966 ; revised manuscript received June 22, 1967. This work was supported
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Grant No. DA-ARO-D-31-124-G576.

1The notation used in this paper is identical to the notation of our previous work [1], [2].
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However, the computational problems encountered in evaluating the necessary ex-
pressions are formidable, even for a digital computer. It appears unlikely that, in general,
practical parametric synthesis techniques based on this method of analysis are obtain-
able. The purpose of this paper is to develop the mathematical apparatus on which
efficient synthesis techniques can be based. The application of this apparatus to the
optimum synthesis of statistical communication nets is discussed in another paper [3].

II. Probability computations with normally distributed branch flows. One of the
most common assumptions in probabilistic approaches to physical problems is the
“normality”’ (Gaussian) assumption. This assumption is usually based on physical
observations and some application of the Central Limit Theorem. In our problem,
we will assume that the branch flows are normally distributed random variables. This
assumption is justifiable on the following grounds: (1) In the case of telephone systems,
branch flow has been observed to be Poisson distributed [4]. The normal approximation
to a Poisson variable is usually adequate for most purposes. (2) A branch flow is actually
the sum of a large number of independent random variables, since each flow consists
of the contributions of a large number of subscribers. These independent variables may
be considered to assume two values, “0”’ and “1”. Then, it can be shown (see Theorem
6.9.3 [5]) that the limit distribution of the standardized sum of the variables is normal,
and thus, if a large number of users have access to the same line, the flow distribution
is approximately normal.

Before proceeding, we must realize the limitations of the normality assumption.
If the random flow F, in branch b, is normally distributed with mean u, and variance
o2 (written N(u,. , o2)), the probability that an additional flow £ may be established
in b, is

z 2
Prob e, — F, >z} =1 — /‘; (_ZFII’%; exp {—% LL—(C—;EL)]} dy, (2)

where ¢, is the capacity of b, . The physical constraint that flow F, lies in the interval
[0, ¢;] requires that the mean and variance of F, is such that the ““tails”” of the approxima-
tion are negligible. In other words,

’ 1 1[y — lik]z} . _

e @077, P {_2 2 (=0 k=1,2--b (32)
and

S S S B el ol P _ ‘

o 2m)'"%0, exp{ 2 ai dy = 0. k=1,2---,0b. (3b)

If the above equations do not hold, we must deal with truncated distributions (Sec.
19.3 of [6]). The implications of this statement are that even though the demand on a
line is normally distributed, the actual distribution of branch flow may not be. For
example, this is the case when a large number of people randomly sample a line of small
capacity according to a normal distribution with a large mean. Although the demand
on the line is normal, we can expect that the flow in the line will always be close to the
line’s capacity.

We have not yet completely specified the probabilistic structure of the model since
we have not stated the relationship between F, , F, , --- F, . In this treatment, we
will not assume that the F.’s are independent. Instead, we will make the more general
assumption that the joint distribution of § & (F, , F,, ---, F,)’ may be approximated
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by a b-dimensional, nonsingular normal distribution [6] with mean vector u and variance-
covariance matrix ¥ (written N (u, Z)). Therefore, the probability density of F is

1 1 re—1
pfi yfoy ooy o) = @[S &P (=3 —wZT(f — v 4)

wheref = (f,,7., -+, /,), |Z| represents the determinant of =, and ’ indicates transpose.

The available capacity C; of branch b, is a random variable given by C, £ ¢, — F, .
Thus, it is easy to see that the random capacity vector C = (C,, C,, ---, Cp) is
N(c — g, Z). We want to find Prob {F;; > R}. If C were a fixed vector, the maximum
flow F;; would be given by Ford and Fulkerson’s Max IFlow-Min Cut Theorem [7]
which states that flow F;; > R is attainable in G if and only if

Fg=min (|4, -+, |4) > R 5)
where 4, , --- , 4, are the set of basic cut-sets of G which separate v; and v; , and |4,
is the value of A, obtained by adding the capacities of the branches in 4, . However,
in our problem C, , --- , C, are random variables and consequently |4,], --- , |44
are also random. Clearly,

Prob {Fii > R} = Prob {mln (IAII y T IAal) > R:
=Pr0b{|A1|2R,-~-,|A,,|ZR}. (6)
Therefore, we must compute the joint density of the random vector |A| = (|4,],- - -, |4.])".

The random vectors |A| and C are related by the basic cut-set matrix B = [b;]
(B is a ¢ X b matrix of “0’s” and “1’s” such that b,; = 1 if and only if branch b; is
in cut-set 4;) through the equation

|A| = BC. @)
Thus, |A| is obtained from C by means of a linear transformation. It is well known that
linear transformations of normal variables are themselves normal variables.” In fact,
since C is N(c — u, Z), |A| can be shown to be N(B(c — u), BZB’) [6].

If the rank of B (over the real field) is r and r < g, the variance-covariance matrix
BZB’ will be singular (positive semidefinite). This means that, over the real field, some
of the cut-sets may be expressed as linear combinations of others. To see this, consider
the graph @, shown in Fig. 1. The basic cut-set matrix of G, is

by b by by b; bs b; bg
A,

A,
A,
A, 8
A,
A,
Aq

e = = =]

O O o O = O
—_ O = OO = O

0
1
0
1
0
1
1

S O O = O =
S = - O OO
- o O = = O O
[ N e s

1
r
*This gives us a further basis for our initial normality assumption. Even if the branch flows are not
normal variables, the cut-set variables will, under mild conditions, tend to normal variables. Further-
more, as the complexity of the net increases, the number of branches in a cut-set increases and so the
approximation improves.
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Fig. 1. Graph G..

and it is easily seen that |4,| can be expressed as a linear combination of |4,|, |4.],
and |4,|. In fact

|A7| = |Azl + IAaI - |A1|- )

In this case, [BZB']™! does not exist. Then, we can reorder the |4;| such that the rows
of B corresponding to 4, , --- , A, are linearly independent. There exist constants
Gen(k=1,---r;h =1, ---,q — r) such that

lAhI = kE A, i+h |Ak|) h = 1) tr,q T (10)
-1

Let B be the » X b matrix with respect to the reordered A,’s whose rows correspond
toAd,,A,,---,A,. Then

44
. (=8¢ (11)
)

and we can write the probability that the maximum flow is at least R as

1
Prob {F.; > R} = f o f(_2;)—'7§|_32 B,Iﬁﬁ
cexp {—1i[x — B(c — w)'[BZB]'[x — B(c — w)]} dx, (12)

where x = (v, , ---, z,), dx = dx, dx, --- , dz, , and Q is the convex region defined
by the inequalities

,:Za,,_i,,,,x,‘ZR, h=1 .-, q—r

=1

This expression is complicated, but the number of integrals to be evaluated is r and
r < b (the number of branches of @).

We can also express Prob {F;; > R} as the product of integrals of independent
normal densities. If the rank of BZB’ is r, each |4,| can be written as the sum of 7 in-
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dependent normal variables, say Z, , --- , Z, . Variables Z, , .-+ , Z, are related to
|4,], ---, |4,] by means of a linear transformation. The transformation can be found
by using the method of Jacobi [8]. First, we Gauss reduce the matrix BB’ to the upper
triangular matrix 7'. Then, it can be shown that

]

A I s B
|z, - bl Ll 1)

For k > r, since we can write |4,| as a linear combination of |4,], --- , |4,|, with the
help of Eq. (13) we can easily write |4,| as a linear combination of Z, , -+ , Z, . From
Eq. (13), we can find the means and variances of Z = (Z, , --- , Z,)’ which is
N(T"'B(c — w), T""'BZB'T™"). Note that T"'BZB'T™" is a diagonal matrix. If we
then standardize these variables, we obtain

Prob {F;; > R} = f ¢(y) dy fﬂ 6(Y) dyz -+ f ¢(y.) dy, , (14)

(13)

where ¢(y) is the standard normal density function and Q' is the convex region defined
by a set of inequalities of the form

Esikykzki i=12,.-4,q

k=1
and the k;’s and s;,’s are known constants.

To compute Prob {F;; > R}, we must evaluate a probability integral of a multi-
dimensional normal distribution. This problem is of considerable interest to statisticians
and a number of papers have been written on the subject. An excellent review of the
progress in this area is given in a paper by S. Gupta [9]. We will briefly summarize
some special results.

If |A| is N(B(c — u), BZB’), the correlation matriz of |A| is a ¢ X ¢ matrix

P = [pif, (15)
where
ar _ _ By
Pii = Q172,172

is Mii
and B;; is the (i — j)th entry of BZB’. For example, if Z is the identity matrix, the
(i — j)th entry of P'*' is
N
il = T (16)
where n,; is the number of branches in 4; N A4; .
For simplicity, let us standardize |4,]|, --- , |4,] and consider the random variables
Y,, -, Y, defined by

Y.' = (IAtl —E |A’|)/(Va'r lAil)l/zy 1= 1) 2) sy q. (17)

Then, if pnin = min; ; p;; and pm., = Max;.; p:; , the following upper and lower bounds
can be shown to hold® for

$Usually the condition pmin > 0 is required, but in our case Y, - -+ , ¥, are always nonnegatively
correlated.
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Prob {IAll 2 R; R} |Aa| Z R} = Prob {Yl Z Rl y T Yq Z Rq}! (18)

where

RAR_EIAil Zb-:(c:— i
©T (Var [A4)7 T (B..)”2 ’

f_: [H ‘I’(g%f'"l—i,n)‘” )]d;(y) dy < Prob {F; > R}

f . ,,1[ <(pm“) p{m;‘” )]qb(y) dy,  (19)

when &(-) is the cumulative distribution function of the standard normal variable.
Suppose that the correlation coefficients can be written as

pii = a;a; V 1,5 (1 # j). (20)

This condition holds if, for example, the number of branches in A; M A; is constant.
Then, an ezact expression for Prob {F,; > R} is

Prob {F.; > R} = f [II @( — ),,2)]«»(4) dy. (1)

i1=]

If the number of branches n,; in 4; M 4; is not constant, but small compared to the
n,; , the preceding expression gives an excellent approximation to the actual probability.

As another special case, suppose that the expected value of each cut-set is equal to
a constant, say {. Thus

b
Z} b‘i(ci - y'i) = i, 1= 1: s q. (22)

We may want to find the probability that the maximum flow exceeds the expected
value ¢. This problem reduces to one of finding the probability of the positive quadrant,
and has been attacked by several authors. For example, McFadden gives the approx-
imation

e 2 . 4
Prob {F;; > t} = 2 <1 + = Z arcsin p;; + 2 E piipwe + pupin + P-’I-Pik)‘

i>iz1 h>k>i>iz21
(23)
To clarify the above ideas, again consider the network G, shown in Fig. 1. The
number of branchesin 4, NV 4;,¢,j=1, ---,7, are
Ny = 3

Nz = 2 No3 1 N3z = 4
Nig = 2 Noy = 3 N3y = 2 Nyy = 5
Nys = 2 Ngs = 2 Ngs = 3 Nys = 2 Nss = 15)
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Mg =1 Nog =2 MNgg =2 Nyg =3 Nge =3 N = 4

'n17=1 n27=3 n37=3 n47=3 n57=3 n67=3 n77=5

Consequently, if the variance-covariance matrix of the branch flows is the identity
matrix, the correlation matrix of the cut-set vector |4] is

1L 1 2 2 1 1

31/2 31/2 151/2 151/2 2(3)1/2 151/2

, 1 3 1 1 3

1 27 B2 2 B~

; L 3 1 3

5% 2(5)'? 2 2(5)"*

1AL

P = , 2 3 3 @9

51/2 2(5)1/2 5

, 3 3

2(5)'* 5

3

1 2(5)1/2

L L.

and puin = %, pmax = 3/2(5)"%. Therefore,

[ [ty ) o

< Prob {F.; > R}

< [ e(Gai=)"v - gosigrm) po o e

III. Monte Carlo simulation with normally distributed flows. The computation
of the maximum flow rate probability, even in the case of normally distributed branch
flows, seems to be quite tedious. The nature of our exact results indicates that we should
search for a qualitative picture of the probabilistic terminal capacity behavior. We
can generate such a picture using Monte Carlo techniques.

Basically, we simulate the system a large number of times by randomly generating
a set of branch flow vectors {F(k); k = 1, --- , n}. We then apply the Max Flow-Min
Cut Theorem via the relation

F.i(k) = min B(c — F(k)) (26)

over rows

to find the maximum flow through the graph at the kth simulation. We repeat this
process n times and then form the Empirical Distribution Function S,(z) defined by
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S0 = 3 3 hFa®), @)

where

0, U>
h(U) = {1 U < ﬁ

Thus, nS,(z) is the number of F,;(k) that are smaller than z. By Glivenko’s Theorem
(Theorem 10.10.1 of [5]), we know that S,(z) converges as n — «, in a very strong
sense, to the true distribution of F;; . Hence, if we pick n large enough, we can plot
a distribution function which will be an excellent approximation to the theoretical
distribution of F,; .

A computer program was written to perform the above simulation. For simplicity,
the branch flows were assumed to be identically and independently® distributed normal
variables (the effect of truncation was then included). Branch capacity was treated
as a variable parameter, and for a fixed capacity vector ¢ = (¢; , --- , ¢,)’, a graph
of 1 — 8,(2) consisting of 100 sample values of maximum flow, was drawn. In some
cases, the capacity of each branch was taken to be a constant ¢, then ¢ was varied over
a wide range of values. In other cases, the capacities of a subset of branches of G were
varied while the other branches were held fixed. Network G, shown in Fig. 1 and net-
work G, shown in I'ig. 2 were two of the graphs analyzed in this manner. In each case,
the means of the branch flows were taken to be 3 and the variances were assumed to be
unity. Branch capacity was then varied between ¢ = 3 and ¢ = 10. Figures 3-8 show
some of the results of the simulation. One remarkable (and surprising) result that
emerged from the simulation was that in every case, S.(z) could be accurately approximated
by a cumulative normal distribution function. This observation is highly significant and
is illustrated in Figs. 9 and 10 where approximations to a number of the curves that
appear in Figs. 3-8 are given. The consequences of this observation are examined in
the following sections.

Fig. 2. Graph G..

4The independence of branch flows does not change the generality of the simulation since the flow
limitation is imposed by the cut-sets which are always dependent (see Eq. (12)).
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IV. Mean and variance of maximum flow rate. The probability distribution of
the maximum flow between a pair of vertices is difficult to compute, even if we make
the simplifying (but usually accurate) assumption that the branch flows are normally
distributed. However, on the basis of the results reported in the last section, it seems
that the maximum flow is itself normally distributed. This observation is supported
by the conclusions reached in a paper by C. E. Clark [10].

If we are allowed to assume that the maximum flow rate probability distribution
may be adequately approximated by a normal distribution, the problem of finding
Prob {F;; > R} is still far from solved. We must now find EF;; and Var F,; . From
the integral form of Prob {F,; > R} given in Egs. (12) and (14), we can see that this
is a formidable problem. However, if we use the approach given by Clark [10] (which
seems to be the best analytic approach available), the problem becomes manageable.

Let |4,], --- , |4,] be random variables with arbitrary means, variances, and cor-
relations. Clark suggests the following approach for computing the moments of
min (|4,], -, |4,]) (actually, Clark discusses max (|4,], --- , |4,]) but the treatment
of these two problems is identical). The random variable min (|4,|, --- , |4:+]) can
be written as

min (|4,], -+, |[4ix1]) = min [min (|4,], -+, [4]), |[4inil]: (28)

Suppose we know the density of min (|4,|, --- , |4:]) and the correlation between
min (|4,], -+, |4:]) and |4..,|. Then, if we know how to find the density of the mini-
mum of two random variables, we can find the density of min (|4,], - -+ , |[4Aisl]). We
can give exact expressions for the moments of min (|4,|, |4.]) and if [- , -] denotes
the coefficient of linear correlation, we can also give an exact expression for

r[min (|4,], |4.]), |4:]] @@ > 3).

Let v; be the ith absolute moment of min (|4,|, |4,]), let ; be the mean of |4,| and
B3 be the variance of |4;|. Then

= 82() + 6,2(—a) — ap(a), (292)
v = (8 + BD®(0) + (&5 + BIB(—a) — (8, + 8,)ad(e), (29b)
and
r[min (|4,], |4.]), |4:]]
= (Br(|4i], [A:)2@) + Br(|4:], |4 DB(—)} /02 — ¥D)'*, $238,  (29¢)
where
@ = 67 + B; — 288 (|44, [4s)),
and
a = (8, — 8,)/av.

Here, we have assumed that the special case 8, — 8, = (|44, |4,]) — 1 = 0 does not
happen. If so, |4,| and |4,| differ by a constant.

Now, if we assume that min (|4,|, |4,]) is itself normally distributed, we can use
the above formulas to find the moments of min [|4,], |4.|, |4s]] = min [min (J4,],
|A2], |As|]. Then, if we assume that this variable is normally distributed we can find the
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moments of min [min (|4,], |4.|, |4s]), |44]], and so on. Eventually, we will arrive at the
moments of min (J4,], - - -, |4,]). Naturally, each such calculation will be inaccurate since
min (|4,], - - -, |4.]) is not normally distributed. However, the errors introduced by this
procedure appear to be insignificant. Clark discusses the errors of the approximation.
A convincing argument concerning the adequacy of the approximation is given by
the following table (adapted from Clark’s paper) of the mean of the minimum of ¢
independent standard normal variables.

Exact

q E min (|44, -+-, |4,]) | Approximation
2 —0.5642 —0.5642
3 —0.8463 —0.8476
4 —1.0294 —1.0310
5 —1.1630 —1.1643
6 —1.2672 —1.2679
7 —1.3522 —1.3522
8 —1.4236 —1.4230
9 —1.4850 —1.4837

10 —1.5388 —1.5367

Furthermore, the approximations to 1 — S,(z) shown in Figs. 9 and 10 were drawn
with means and variances found according to the above method. Therefore, we can
find an excellent approximation to EF; and Var F,; . This means that we can compute
Prob {F.; < R} as

R - EF,',’). (30)

Prob {ng Z R} =1 - @( Va,rF;i

V. Parametric statistical analysis. We can further pursue the observation that
F.; is approximately normally distributed. In [2], we investigated the case where the
branch flows had unknown probability distributions but were observable. Again, let
F(k) = (f(k), --- , fu(k))" be a measurement of the flows (F; ,--- , F,) at time
k(k =1, ---, n). As before, assume that F(1), - -+ , F(n) are identically and independ-
ently distributed. We want to test the hypothesis

H,:p = Prob {F,; > R} > p, (31a)
against the alternative
H;:p < po (31b)

at level a, where « is the probability of Type I error.
If we assume that F,; is normally distributed with unknown mean », and unknown
variance ¢°, we have a parametric testing problem. Let

b
my & Fi(k) = min Z bilc; — f;(k), k=1,--+-,m (32)
1<4<¢ i=1

and let M, be the random variable corresponding to the kth observation of maximum
flow. M, ,M,, --- , M, are identically and independently distributed N (v, , ¢°) random
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variables. Furthermore, let T be the statistic defined by Eq. (33) and let G be the group
of transformations multiplication by a positive constant.

n

(” = l)m > n— B

n

i=1

(33)

Then, T is a maximal invariant on the parameter space of the variables (£ ¢) where
¢ =y, — R[11]. (If tis a particular value of T and ¢ is a transformation on the parameter
space of (£, o), then T is nvariant under g if for every value of (¢, o), T:.0y ) = T2, 0 (2).
If g is a group of transformations such that T is invariant for any g £ G, T is a maximal
_invariant if T, 0,#) = Ti,.0. () for all ¢ implies (¢, , ¢,) = ¢(¢:, 02) for some ¢ £G.)
Suppose we consider the class of all tests which depend on M, , ---, M, only through
the maximal invariant T'. Then, it can be shown [11] that the Uniformly Most Powerful
Invariant Test (i.e. the U.M.P. test among this class) for testing H, against H, at level «,
is

Reject H, if
n'*(m — R)

(ki_l (m, — m)*/(n — 1))

1/2 <K ’ (34&)

and
Accept H, if
n'*(m — R)

(5 tme — w0/ ~ )
=1
where m = (1/n) D _r., My, and K is a constant determined by

K ® 1/2 2
f f w™ "% exp (—%) exp {—%<t<n ﬁ 1> - n‘/200> }dwdt
—-o Jo
' n

= a2"/21‘(

ve > K, (34b)

5 l)or(n — .

Thus, we have a statistical procedure for testing, on the basis of observations of
branch flow, whether or not Prob {F;; > R} > p, . The procedure is optimum in the
sense that the probability of rejecting H, (p > p,) when it is true is no greater than «
and the probability of accepting H, when it is false is minimum among all tests which
depend on the sufficient statistic 7. If we want stronger control over the probability
of accepting H, when it is false, we should test H] : p < p, against H} : p > p, . This
is equivalent to testing H/ : Prob {F;; < R} > 1 — p, & p} against H}: Prob
{F.; < R} < p} , which is the test discussed in detail by Lehmann. We further note
that to perform our statistical test, we do not have to know the cut-set matrix B of G.
Given the observed flow vector F(k), we can form the graph G, which has the same
structure as G but has the branch capacity vector ¢(k) = ¢ — F(k). Then, m, is equal
to the maximum flow between »; and v; in the deterministic graph G, . The maximum
flow m, can then be found without reference to the cut-sets of G, , through application
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of Ford and Fulkerson’s vertex labeling algorithm [7]. This algorithm is extremely
efficient, and its use in conjunction with the statistical test, makes the testing procedure
quite practical.

VI. Conclusion. In this paper, we have given several procedures for computing
Prob {F.; > R}. We have assumed normal branch flows, but most of the procedures
we have given will yield reliable approximations to Prob {F,; > R} even when branch
flows are not normal variables. This is because the value of a cut-set is actually the
sum of random variables and so will usually be approximately normal for a large graph.
Clark’s procedure seems to work quite well, even when the random variables being
tested are not normally distributed. For example, in [10] he shows that the mean of
the maximum of ¢ uniformly distributed variables is close to the mean of the maximum
q normally distributed variables. Finally, we gave a statistical procedure for testing
the level of Prob {F,; > R}. This procedure appears to be extremely efficient. We can
generalize the test to a sequential test but this generalization is complicated and is not
discussed here. The application of our analysis techniques to the optimum synthesis
of statistical nets will be the subject of another paper.
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