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ON THE DIFFRACTION OF A CYLINDRICAL PULSE BY A HALF-PLANE*

BY

G. E. BARR
Sandia Corporation, Albuquerque, New Mexico

The diffraction of electromagnetic or acoustic pulses by a wedge (and by its special
case, a half plane) has been treated in a number of recent contributions. The majority
of these treatments is based on a direct attack on the wave equation of arbitrary time
dependency, with the following cases being treated: Normal incidence of a plane pulse
on a half plane [6], [7]**; two dimensional pulse incident on a half plane [7]; plane unit
step function pulse incident on a wedge [13], [15], [16]; arbitrary pulse incident on a
wedge [12]. For most of the rest, the approach centers on integral transform methods.
The case of a spherical pulse (unit step function) incident on a half plane [22], uses the
Fourier Transform method, while the case of a cylindrical ““Dirac” pulse incident on a
half plane [21] uses the Kontorovich-Lebedev transform method [14].

We wish to solve the wave equation for the potential for the case of a cylindrical
“Dirac” pulse incident on a perfectly reflecting half plane [21]. The procedure used here,
essentially similar to Cagniard’s method [1], [3], [4], gives the solution to this problem
not only in elementary form but in terms of functions of algebraic character.

The procedure is as follows: First one determines the Green’s functions G and G}
for the so-called “modified” Helmholtz equation Au — y*u = 0, itself obtained from the
Helmholtz equation Au + k*u = 0 upon putting ¥ = —4y. (The velocity of propagation
is set equal to one so k = w.) The Green’s functions (7 and G are then cast in the form
of Laplace transform integral [§ F(t)e™”* di. Their inverse Laplace transform with
respect to vy as parameter is the “Dirac” pulse solution for the wave equation, that
is, the Green’s functions for the wave Eq. [1], [3], [4], and [9]. From the solution for the
“Dirac” pulse the effect of an arbitrary pulse excitation g(¢) can be synthesized. Several
special cases for g(t) are examined.

I. Green’s Functions. The Green’s functions G{ and G5 for the wedge for the
Dirichlet and Neumann problems, respectively for the modified Helmholtz equation
are well known to be:

Gl _ 1 oo : :
02} = 5. 2 en{cos’j;" (6= &) F cos’s 6 + qs)}f,.,,a(w)K",a(w) M
for p’ > p and the same formula for p > p’ save p and p’ are interchanged, where Q(p’, ¢')
is the location of the line source and P(p, ¢) is the location of the observer [18]. If we
open the wedge so a, the angle of opening, is 27 we have the Green’s functions for the
half plane, namely:
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**Numbers in square brackets refer to the bibliography at the end of this paper.
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gz} = —4—-17r Z e,,{cos%' 0 —¢)F cosg (¢ + ¢')}I w2(Y0) Kanr2(ve’), 2

n=0

for p < p’ and the same formula with p and ' interchanged for p > p'.
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Fia. 1. Wedge of opening angle « showing the location of the line source Q(o’, ¢’) and the observer P(p, ¢).

II. Expression of G} and G} as a Laplace transform. Our goal is to express G and
G} as a Laplace Transform integral with 4 as transformation parameter, i.e., G} and G}
should be of the form:

gz} - fo " Fe dt, @)

where F(t) contains, besides the integration variable ¢, the properties «, ¢, ¢, p, ;;' as
parameters, but is independent of . Then the inverse Laplace Transform of G{ and G ,
£7{G! ,} is just F(t). For this purpose it is desirable to represent the term

K n/z(’YP,)I n/2 (‘YP)
occwrring in @{ and G} in such a form. We use the representation

a+b 2 2 __ 42
109t = 36 {7 P ()

2 © tz — 2 __ b2 ot

for a > b, Re s > 0. P and Q are Legendre functions of the first and second kinds re-
spectively. This representation appears to be new and is derived in the appendix. Now,
replace I, o(v0)Knr/a(vp’) in (1) by (4) while putting v = nr/a, s = v,b = p, a = p'.
Upon interchanging the order of summation and integration which is permissible be-
cause of the absolute convergence of both sum (1) and integral (4) we encounter terms
of the form

© 2 ,2 2
;0 e,.P,.,/a-m( 200 cos "~ (5)
and

= nr £ —p" = p? nr
2 & €08 (7 JQusamia =) cos (0], (6)

a0 a 2pp’

where v = ¢ F ¢'.
Series (5) can be summed for an arbitrary opening angle o for the wedge, while
presently (6) can be summed only for @« = 27, namely the half plane. Then the Green's
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functions G{ and G} for the modified Helmholtz equation can be given in the desired

form of a Laplace Transform integral (3). The summations of these series are presented

in the appendix. Henceforth we will consider the case « = 2w, the half plane, exclusively.
Then, by (2), (4)

Z &l n/2(vp) Koya(yp”) cOS (gg)

n=0
p'+p ® ' 2+ ,2__t2’_
= %’(PP,)IN{‘/;'_D [g} €, COS <§)Pn/2—1/2<p—2%— e dit
2

+ 2 fw [f: (—1)", cos (nv)Q (ﬁ;’;:ﬁ):le—w dt} @
e €, JWn—1/2 200’

The sums under the integral signs are given in the appendix (2), (3).
At first we consider the seccond term on the right hand side of (7) and, from the
appendix (3), obtain

j:" , l:"Z:) (—1)", cos (m)Q, — % (fz—_f_—_f’fﬂe_,, dt

“p 2pp’

= 2loo) ™ [ 1= P+ o = 200 oI AL (@)

p+p

Since z = (2 — p° — p'*)/2pp" > 1 along the whole interval of integration ¢t = p + p’
to ¢ = o, the condition for the validity of the sum (3), appendix is met. For the first
term on the right hand side of (7), we have at first, by (2), appendix,

© . 2 2 42

> e, cos <§>P1/2+n/2(8—+—2p—,—t> = 4(pp") V3 — p* — p'* + 2pp’ cosv)™*  (9)
n=0 pp

subject to the conditions on (2), appendix.

Put cos U = (p° + p' — t°)/2pp, then, since in the integration of (7) cos U varies
from 1 to —1 when ¢ varies from p’ — pto p’ + p, U varies from 0 to 7. But the sum (2),
appendix, vanishes when U < |V] [here we write |V| since V = ¢ F ¢']. Hence, if (9)
is inserted into (7) the integration starts not with p’—p but with (p°+ p* —2pp’ cos V)
and ends with p + p’. If moreover ¥V > =, the sum vanishes altogetherin 0 < U < =
and accordingly the integral also.

Since V = ¢ F ¢’ we must investigate for which configuration ¢ F ¢’ = x. Let the
source point @ be in the upper half planc (because of symmetry this is no restriction),
ie. 0 < ¢’ < 7 and consider the cases indicated in the Figs. (2) and (3): We form the
image Q" with respect to the half plane or its extension and draw the straight lines QF
and Q'E where E is the edge of the half plane. The domain 0 < ¢ < 27 is now sub-
divided into three regions I, IT, TIT as indicated in the figures.

Region I is bounded by the upper swrface of the half plane and the boundary of
geometric reflection.

Region II is bounded by the boundary of geometric reflection and the boundary
of gecometric shadow.

Region III is bounded by the boundary of geometric shadow and the lower surface
of the half plane.
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¢+¢'=ﬂ' Q(P"¢.)

Q'(p; -4

F1c. 2. The half-plane showing the locations of Regions I, II, III for the line source Q(p’, ¢') located
directly above the half-plane.

¢+¢'= T

¢-¢=n

Fig. 3. The half-plane showing the locations of Regions I, IT, III for the line source Q(p’, ¢’) not directly
above the half-plane.

Then, for a point of observation P(p, ¢) lying in the respective regions:
Region 1 ¢ +¢ <m lp—9¢]<m
Region 11 ¢+ ¢ > m ¢ — ¢ <m,
Region 111 o+ ¢ > ¢ —¢ > m
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Hence, by (9)
p'+p i 2 ,2 2
n NP <P + o _t>}-—wdt
‘/;'_’ {; €, COS 2 (¢> + ¢) —1/24n/2 2p_pi_ e
pre 2 —1/2 —
= 460 [ (7 — 0"+ " = 200" cos (¢ F )" d1 (10)
[p*+p'2~2pp’ cos ($F¢’)]11/2

in the Regions I and II for the upper sign and in Region I for the lower sign, while (10)
is zero in Region III for the upper sign and in Regions IT and IIT for the lower sign.

If R and R’ denote the distance of the point of observation P from the source point
Q and its image point §’, respectively then:

R =PQ = [p"+ p”" — 2pp’ cos (» — ¢')]"*,
R" = PQ = [p"+ p”* — 2pp’ cos (¢ + ¢")]'"*.

R
?\p.j’la“ Qlp', ¢"

<
\
\
‘ R'
\
\\
‘ Ql(p'-'¢l’

Fia. 4. The half-plane showing the locations of the line source Q(p’, ¢’) and the image Q'(p’, —¢') relative
to the observer P(p, ¢).

Then, from (2), (7), (8) and (10) one obtains for the Green’s functions of the two di-
mensional modified Helmholtz equation: for a point P lying respectively in

Region 1
1 1 Ii/wwl 2 20 —1/2 —yt f“ﬂ, 2 12 =1/2 ~ 7t ]
- _ == — ¢
,} o L, (¢ RY e dt 7 . (¢ R d

1 [[ ( — R e dt F f (F — R dtJ~ (11a)
47[' Yotp! ptp’

Region 11
G;} N (FF — R dt
2 2r Jg
[ e —wyreraE [ @ =R ()
dr LJoss prp i

Region 111

g}} S f (f — R V%7 dt F f (£ — RV dt |- (11c¢)
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This is the desired form (3). Note that the integrand is elementary. We write
fp+p’ @ — RZ)-I/Ze-‘“ df = j‘” @ — Rz)-—l/ze—n dt — /‘” (2 — R ™% " d
R R pt+p’
and observe that [5, vol. 2, p. 82]
[ @ = By at = Kooy,
R

Then G{ and G} can be written in the form:
Region 1

Gl

1
a;} = —5 KorB) F Ku(uR)

+ i [f (t2 _ R2)—1/2e"1‘ dt :F ‘/; (t2 — Rl?)-l/?e—Tl dt] (123)
ptp’ +p’

with the physical interpretation that the field consists of two lines sources, one located
at Q (the original source) and one located at its image point @', plus an additional
“diffraction” term.

Region 11
Gf} - Llrepn+Ll [ f T =R dl [ T — Ry dt:l (12b)
G} 27 ° dr L J,hp pto’
where the field consists of a single line source located at @ plus a ‘“diffraction” term.

Region 111

Gl’ . i ® 2 2y—1/2 — vt ® 3 P2—1/2 — vt
G;} _ —%UW & — RV dt:Ffpw & — R % dt] (12¢)
where the field consists of a “diffraction” term. Note that the “diffraction’” terms are
not identical.

Time harmonic case. In order to obtain the corresponding expressions for the
time harmonic case (Helmholtz’s equation), we have to replace y by k. Since K,(iz) =
—irH? (2)/2 it follows from (12a) that

Region 1

g} = i (1. (kR) F HP (kR")]

4 ‘o

+ 1_ [] (t2 _ I{Q)_]/ze_ikt d[ F f (12 _ R,?)-—l/2e—ikt dt:l’ (13)
p+p’ p+p’

A similar change occurs in each of the other two regions.

III. Transient solutions. Let us now assume that a “Dirac” pulse is applied to the
line source, starting at time ¢ = 0. The field produced by such a “Dirac” pulse will be
labeled ®,(t). Then

o,(1) = £;1 {G1 .} (14)
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&,(1) is the inverse Laplace Transform of the Green’s functions for the modified Helm-
holtz equation, with respect to v as inversion parameter [18]. The terms in (12a) to
(12¢) are expressed as Laplace Transform integrals of the form of (3), whose inversion
is the function F(f) itself. Then for a point P lying respectively in the three regions:

Region 1

Bo(t) = —o- [( = BY™ F (F = R)™] + - [ - BY™ F (F —R)™]  (150)

Region 11
@oll) =~ (F — BY + - (P — BYV £ (F - RHT) (15b)
Region 111

2,() = — [(F = BY™ = (¢ = )™

with the last two terms in (15a) to (15¢) equal to zero when ¢t < p + p’, while the others
are zero for t < R and ¢t < R’ respectively.

We are now in a position to determine the field &(¢) due to an arbitrary time de-
pendent excitation function g(t) applied to the line source at @ [18], under the assump-
tion that ¢g(f) = O for ¢t < 0.

¢

B() = fo " @t — g(r) dr = f_ gt = D) do (16)

where ®,(z) is the “Dirac’’ pulse solution. Then from (15a) to (15¢) and (16) we obtain:
for a point P lying in

Region 1

®(t) = —217 fR @ — Bt — 2 da & o fk @ = R~ 2) da

41 [ f L@ = RY Vgt — 2)de F f @ — R™)™(t — 2) dx] (17a)

47|' +p’

Region 11

(8 = ——%rfk (z® — R)™V?g(t — x) dr

+3 U @RV — Dk [ @ = R - 9 dx] 4

Z; ptp
Region 111
®(t) = --4—11; [f ’ (® —R)™V’g(t — 2) dx F f ’ (* — R"*)™V*g(t — 2) dx:l ,  (17¢)

with integrals whose upper limit ¢ is smaller than the lower limit R, B’ and p + p’ re-
spectively must be set equal to zero.
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IV. Special cases. As an example for (17a) to (17¢) we choose
g =, 0LZt<T
=0, t1<0, t>T,

namely a time harmonic cylindrical pulse starting at ¢t = 0 and of duration T. The
integrals occurring in (17a) to (17¢) are then of the form

d
f (@® — a®)™V?g(t — 2) dz.
Since g(t — z) = Ofort — z > T two cases must be distinguished:
@)y t—c>T,
byt—c<T.

The lower limit of integration is therefore ¢t — T in case (a) and ¢ in case (b).
We then obtain:

Region 1

¢ ¢
@(t)e—-iut —_ _511; [f (xz _ R?)—I/Ze—o’as dx == f (xz — R,z _1/26_“” dx]
t ts

+i__ f’(z_R2—1/2—iwzd :Ff‘(2_R,2-l/2—"a:d 18
o hx Y% z ‘.:c (4 z (18a)

Region 11
t
(b(t)e-l’wt — _2_];;f (x2 — R2)—1/2e—"u: d:c
hl , . .
+ i [f (2® — R)™V% " dx + f (a® — R"*)™V% " dx] (18b)
Region 111

1 13
@(t)e—iwt — _4_11; [[ (x2 _ R2)—1/28—iwz dx x f (xa — R/2)—l/2e—|'uz dx]~ (180)
ts ts
The limits are:
tt=Rift — R < Tandt, =t — T whent — R > T,
tb, =R ift — R < Tandt, =t — Twhent — R > T,
ts=p+ p whent — (p+ p') < Tandt; =t — Twhent — (p+ o) > T.

The following terms have to be omitted:

The first term in (18a), (18b) when ¢t < R, the second term in (18a) when ¢ < R’
and the last two terms throughout when ¢t < p 4 p’.

We specialize (18a) to (18¢) now to the case w = 0, that is, the case of the rectangular
pulse of duration T and strength unity. In this case the above integrals become ele-

mentary since
2 2\1/2
2 2-1/2 — (z—=a)
/ (= a) " dzx = In [x + 2 ]



1967] DIFFRACTION OF A CYLINDRICAL PULSE 201

and we obtain

Region 1

_ 1 [t+@ —By” ] [t + (¢ = R ]}
2 = =5 {m [:, T X R e

1 t+ (# — R)V? :I [t + (# — R ]}
+ o {ln [13 ¥ (t§ _ Rz)x/z F In T (tg — Rlz)l/z (19a}

Region 11

_ i t+ (t2 — R2)1/2 ]
) = —5,In [h FE-RB)"

1 i+ (£ — R)"” ] [; + (& — R ]}
+ i {In [ta T (E=-RB)” +In L+ E—RH” (19b)

Region 111
_ _-1_ £+ (t2 _ R2)1/2 :l l:t + (t2 _ R;2)1/2 ]}

q’(t = 4r {]n I:ts + (t§ _ Rz)x/z F In f + (lf§ —_ R/2)1/2 (190)
with ¢, , ¢, , t; as given before. Certain terms have to be replaced by zero under the
following conditions:

The first term in (192) and (19b) when ¢ < R, the second term in (19b) when ¢t < R’,
and the last two terms throughout when ¢ < p + p'.
We conclude with the case T = =, i.e., the incident cylindrical pulse is a time harmonic
one, starting at ¢ = 0. Here only case (b) applies, with the limits ¢, , ¢, , £; in (18a) to

(18c¢) being: t;, = R, t, = R’, t; = p + p’. Of particular interest is the case t > p + o,
i.e., none of the terms in (18a) to (18c¢) vanish. We then write

¢t © ©
f (xZ - R2)—I/Ze—iw: dx — f (x2 - R?)—l/2e—o‘uz dﬁv — f (x2 — R?)—I/Ze-—o'wz dx
R R t

= —3irH (@R) — f @ — R)™%  dx,  (20)
¢

using the well-known expression for the second Hankel function [5, Vol. 2, p. 21]. A
similar expression is used for the term involving R’. Similarly

13 @ @
f (xZ _ RZ)—1/28-€¢0: dx = f (x2 _ RZ)—1/26—"«:: dx _ f (xz _ R?)—1/2e—iwz dx.
ts pt+p’ t
We insert these results into (18a) to (18c¢) and group time independent terms together
and time dependent terms together. The field ®(¢) then appears in the form:
(et = Gy + Yo(h).

Here G, and G, represent the Green’s functions for the time harmonic case (13). Y r(f)
represents the transient field, that is, the deviation of the field produced by a time
harmonic excitation starting at ¢ = 0 from the quasi-stationary case of the time harmonic
excitation starting at ¢t = — o (provided ¢t > p + p’). We find for the transient field

Yat) = 4% [ f ¢ (2t — B) TV dz F f e (@ — RV dx] 22)
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for all three Regions I, II, ITII. Obviously (22) tends to zero as t — «, i.e. the transient
field becomes less and less significant with increasing time.

APPENDIX

Some integral and sum formulae. Summation of series involving Legendre functions

2% 'a(cos v — cosu)~? -
Z G”P_l/z.,.,,,/a(cos u) Cos ( ) a( S su) ’ v < v < u

n=0 =0, wu<v<22a-—u,

(1)

0 <u<m (eis Neumann’s number, ¢ = 1, ¢, = 2, n > 1).

The formula (1) is a Fourier series with respect to » with period v = 2a. To prove (1)
we expand the function

f@) = (cosv — cosu)~"?, —u<v<u
=0, otherwise,

into a Fourier series of period 2a. Since this is an even function of », we have, by Fourier’s
theorem:

f) = Z A, cos( )
n=0
with
_ - [* nm
4, = (20) f_ 1) cos ( d ) do,
therefore for o > u
_ -1 “ _ -1/2 nwv
A, = €.(2q) f_“ (cosv — cosw) cos ( = ) dv.

This integral is known [5, Vol. 1, p. 159, formula 27].
A,, = e,,a-l2_1/21rP_1,2+,,,/a(cos u).

This proves (1).
The special case a = 27 yields
= = 932 _ v _
2 €Pusz-12(c0s u) cos (’g) (cosv — cosu)” u<v<u @
" = 0, u<<v<dr —u
0<u<m.

The sum for (8) is known [5, Vol. 1, p. 166]
2 (=1)"e@u1/2() cos () = 27x(e + cosy)™, 22> 1. €)
n=0

Representation of the product of two modified Bessel functions as a Laplace trans-
form. We prove the formulae:

1(b9)K.(as) = z(ab)'”’{f P,_,,,,(a +2l:b")"‘ dt

@ 2 — 2 — 2
+ 277" cos (m) f . Q,_1,2<£——2aab—b)e"‘ dt} @
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. © t2 — a2 b2 —
K,(as)K,(bs) = in(ab)”’ /;+b (P,_,,z(~—-—;;1b—)e t dt. 5)
If (4) is established, (5) follows by the relation
K,(x) = #x[2sin m)] '[I-,(z) — I,(z)]
In order to prove (4) we start with the well-known formula [5, Vol. 2, p. 96]

109K, (as) = f "0 + )7 (a0 (b) dv

a>b, Rev> —1.

In the integrand above we substitute

©

0@ + )7 = f e *'sin (vt) d¢

0

and obtain, upon interchanging the order of integration
1,(09)K,(as) = f e_”[ f J,(a)J ,(bv) sin @f) dv] dt
1) 0o
The inner integral is known [19, p. 169]

f T ()T, (bv) sin @) do = 0, 0 <i<a—b,
1]

2 2 — 2
%(ab)“”P,-l,z(%%b———t—> , a—b<t<a+b,

I

_ - £ —a - b
7 '(ab)™"* cos (W)Q"‘“(T) , t2>a.

This proves (4).
List of notations.

= (=D
J.@) = ,;,n!(v+n+ D

Y,(2) = (sin m)7'[J,() cos (m) — J_,()],
H”@) = J.¢) — iY.0),
Bessel function, Neumann function and Hankel function, respectively.
LE) = e """,
K,(z) = w[2sin )] [[-.¢) — LG
modified Bessel function and modified Hankel function, respectively.
K,(z'""?) = —ire *""H (2)

(see [5, Vol. 2, Ch. 7}).
P,(z) Legendre function of the first kind, —1 <z < 1.
®,(z) Legendre function of the first kind, z not on the real axis between 1 and — «.
Q,(z) Legendre function of the second kind, z not on the real axis between 1 and — .
(See [5, Vol. 1, Ch. 3].)
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