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GENERALIZED PRANDTL-MEYER WAVES IN RELAXATION
HYDRODYNAMICS

N. COBURN

The University of Michigan

1. Introduction. Two topics will be discussed in this paper. First, we shall express

the basic relations of the theory of "steady state" relaxation (or nonequilibrium) hydro-

dynamics in intrinsic forms involving the characteristic variables. The procedure will be

similar to that of a previous paper for equilibrium hydrodynamics [1]. Secondly, we

shall study these new intrinsic equations and determine when generalized Prandtl-

Meyer flows exist in nonequilibrium hydrodynamics. The properties of Prandtl-Meyer

flows in the steady two-dimensional isentropic nonmagnetic equilibrium supersonic case

are discussed by Courant-Friedrichs (cf. p. 265 [2]). Further, the theory of such general-

ized flows for the corresponding three-dimensional case was given by F. Tan [3]. Finally,

the present author discussed a flow of a relativistic and the associated Newtonian fluid

for the corresponding nonsteady two-dimensional case [4],

We shall show that: (1) the basic seven equations of steady three-dimensional re-

laxation hydrodynamics (System I) can be expressed in an intrinsic form involving six

dependent variables and curvatures of three congruences of curves (System Ilia); (2)

one of the relations of System Ilia is a linear combination of the other six relations

(Theorem 3); (3) if this relation is omitted, then the resulting system of equations

(System Illb) is equivalent to System I or Ilia. Then, we shall introduce a coordinate

system in which a family of planes, the characteristics, that envelope a right cylinder

are coordinate surfaces. The bicharacteristics are a family of lines in each character-

istic plane. Sec. 3 is devoted to determining the form of the equations of System Illb

in this coordinate system. Finally, simple waves of Cases I and Ha, b (cf. p. 121 [5])

are defined for the case of steady "supersonic" three-dimensional relaxation hydro-

dynamics. In both Case I and Ha, the bicharacteristics are parallel lines in the above

family of characteristic planes; in Case lib, the bicharacteristics form a family of radial

lines in each characteristic plane. However, by definition: in Case I, all the flow vari-

ables are C1 functions of the density, p; in Cases Ila and lib, except for the relaxation

scalar, K, and the relaxation rate variable, q, all the remaining flow variables are C1

functions of the density, and of the density and entropy, respectively. It is shown that

the flows of both cases must be generalized Prandtl-Meyer flows. Further, in Case I,

the flow is isentropic of the "equilibrium type" (cf. p. 127 [5]), and such that K depends

on a special junction of p (Theorem 9). In Case Ila, the flow is nonisentropic of a par-

ticular nonequilibrium type, and such that K/q is a particular function of p (Theorem 10,

cf. p. 124 [5]). Finally, sufficient conditions for a chemically reacting gas to possess

simple waves of Case I are determined.

2. Intrinsic forms of the basic relations. Let T, p, q, S, p, vt (j = 1, 2, 3) denote the
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temperature, density, relaxation variable, entropy, pressure, velocity vector, respec-

tively. Further, let x' (j = 1, 2, 3) be a Cartesian orthogonal coordinate system and let

dj = d/dx'.

Although there is no difference between contravariant and covariant vectors in Cartesian

orthogonal coordinates, we shall introduce both quantities in order to use the Einstein

summation convention of summing on any repeated upper and lower index (see also

the coordinate system of Sec. 3). Now, we define the variable, q, by

q = v1 d,q. (2.1)

Also, we introduce two more scalar variables: the relaxation scalar, K, and the internal

energy, e. Then, the equations of motion, continuity, and energy for the steady state

flow of a compressible, nonmagnetic fluid in relaxation hydrodynamics are [5]

pvk dkVj + d,p = 0, (2.2)

p djv' + v' djp = 0, (2.3)

KTv' d,S = q, (2.4)

q = —K de/dq. (2.5)

It should be noted that the above system contains three independent thermodynamical

variables. If we choose these variables to be p, q, S, then in one important case [5], we

can assume T, j>, e, K, q are C functions of p, S, q. Further, by use of a proper formulation

of the first law of nonequilibrium thermodynamics [6], it can be shown that coefficients

A, B, C exist so that

. dp de . 2 d'e .

A-v„ = 2'^' «?• <2-6)

d = §1L _ _2 d*e to 7\
dS p es dp' ( )

(2.8)dq dp dq

Finally, we define the coefficients F, G by

F = d*e/dq dS, G = d2e/dq\ (2.9)

Now, we replace (2.5) by an equation involving only derivatives with respect to x'.

To do so, we form the total derivative of (2.5) and find by use of (2.5), (2.8), and (2.9)

that

J _L Fv' A S 4- -I- -2-,v' B,q = -K^v' diP + Fv{ dtS + Gv' diQ) + £ V dtK (2.10)

The system (2.1)-(2.4), (2.10) consists of seven partial differential equations in the

seven dependent variables q, q, p, S, v,- . Note that: (1) q is defined in terms of these

variables and their derivatives by (2.1); (2) this system differs from the corresponding

equilibrium hydrodynamics system in that the relation (2.4) is not quasi-linear; (3) the

pressure, p, can be eliminated from (2.2) by noting that p is a C1 function of p, q, S
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and using the coefficients A, B, C of (2.6)-(2.8) to obtain

djP = A djp -f" B djS -f- C d,Q. (2.11)

Definition 1. The equations (2.1), (2.2)-(2.4), and (2.10) will be called System I.

Our next step is to introduce the characteristic manifolds [5] of (2.2)-(2.4), and (2.10).

Let <t>{x') = c, where c is a constant, denote a family of such manifolds. Then, the unit

normal vector to the characteristics, n, , is determined by (cf. (2.48), (2.51) of [5])

R{vjn,)2 = Z (2.12)

where R, Z are defined by (k is a C1 function of 4>)

R = F(2q + kK) + GTK, (2.13)

Z = F(2q + kK)ci + GTKcl . (2.14)

Note, the limit speeds c0 , c„ are {cf. (2.47) of [5])

2 _ a C* ^ - a ?C_
Co   -A } ^co   -A 2 T7T '

p \j p r

From (2.12), we obtain in the "supersonic" case (where the normal cone is real)

Theorem 1. In the case of nonequilibrium flow (as in equilibrium flow [7]), the normal

and the associated bicharacteristic cones at any point P are right circular cones with the

velocity vector along the axis.

Thus, if t' is a unit vector along the bicharacteristic corresponding to n', we may

write (cf. p. 57 [7])

v' — cn' + bt'. (2.16)

Here, v is the magnitude of v' and c, b are defined by

b2 = w2 - c2. (2.17)
ti

Now, we introduce the directional derivatives along n\ t' and the unit vector p',

where p' is orthogonal to both t', n', and is such that the ordered triad I', p\ n' form a

right hand set. We shall use the notation of a previous paper [1] and write

hhmp,d' (2-18)

Replacing v' of (2.1)-(2.4), (2.10) by (2.16) and also replacing d,p by (2.11), we find

after scalar multiplication of (2.2) by n', p', respectively

(2.19)

Pb ~ + pcH'n" dkn, + Pc g + pbctW dkn, = (2.20)

* I+a*'' + >b I+sj< - ~A t -B If -c I ■ (2-2i)

pc2p'nk dknt + pcbp'nk dktj + pebp1 th dknt + ptfp't* dktj =
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PC d,n- + <■'«/ + <> f; + <•§? + « f; + i> f? - (2.23)

*4if + 6f)-5'- <224»

• I + 6 If + KC,'~'(c t + 61) - I (c f + 6 f) = - c*«' (2'25>
The system (2.19)-(2.25) consists of seven equations in the six dependent variables p, S,

q, q, b, c. In addition, these equations contain the directional derivatives of b, c and the

curvatures of the t', n', p' congruences of curves.

To show the manner in which these curvatures enter the theory, we note that if

to', u', w', are the curvature vectors of the t', n', p' congruences, respectively, then by

definition

to1' = tk dj\

ui = nkdkri, (2.26)

w' - pk dkp'.

Further, since n' is a unit vector which is orthogonal to a family of surfaces, the charac-

teristics, we may write (cf. p. 28 [8])

dink = sik + njUk (2.27)

where sjk is the symmetric second fundamental tensor of the characteristic surfaces.

An examination of (2.23) will show that the geometric significance of

djt', djn'

must be determined. From the well known decomposition of the metric tensor, g'k,

we find (cf. p. 96, [9])

ga = t't" + n'n" + p'p". (2.28)

Thus, we obtain

dj = gik d,ik = n'n' d,tk + fp" d,tk (2.29)

In view of the orthogonality relations between t', n', p', and (2.26) we see that

»V a,4 = , (2 80)

v'vk d<l< = .

Thus, (2.29) becomes

<9/ = -t\u, + w,). (2.31)

Further, by use of (2.27) we find

d,ri = giks,k = M* (2.32)

where M* is the mean curvature of the characteristic surfaces.

Definition 2. The geometric relations (2.26), (2.27), (2.30)-(2.32) will be called

the System II.
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By use of System II, the relations (2.20)-(2.23) can be expressed in the forms

>6 ft + fn + (2.33)

" I + I - »M'u' + >hVm< " ~Airn-Bdi-C¥n- <2'34>

pc'p'Uj + pb2p1 rrij -f pcb(p'nk dj, + p'tk dkn,) = —A^fz — B^-— C^:, (2.35)
op op dp

m + m + teM._ fKu, + (2 x)

Definition 3a. The relations (2.19), (2.24), (2.25), (2.33)-(2.36) will be called
the System Ilia.

Definition 3b. The equations (2.19), (2.24), (2.25), (2.33), (2.35) and (2.36) will
be called the System Illb.

We can summarize our results by

Theorem 2. The equations of System Ilia and the relation (2.16) (which defines

V, n') are equivalent to the basic relations of relaxation hydrodynamics—the equations of

the System I [(2.1)-(2.4), (2.10)].

Proof. The equivalence of these two systems follows from the relation for any

scalar, Q (see (2.16))

v>},g.c^ + bf (2.37)

and the equations of System II.

The relations (2.1)-(2.4), (2.10) of System I or the equivalent relations of System

Ilia, are of three types: (1) the scalar, q, is defined by (2.19); (2) the relations (2.20)-

(2.24) are equivalent to the laws of motion, continuity, and one of the energy conditions,

respectively; (3) the relation (2.25) constitutes a new assumption. That is, the relation

(2.10) (which is equivalent to (2.25)) is a necessary condition for the second energy con-

dition (2.5) but is not sufficient for the validity of (2.5). In fact, it appears that two

additional relations of this type (formed by letting w'd, , u' 3,- operate on (2.5), where

v', w', ii are mutually orthogonal) are needed. This would lead to an overdetermined

system of nine equations in six dependent variables.

This surplus of relations is deceptive. Thus, if K(p, S, q) and e(p, S, q) (or de/dq)

are known functions of their arguments then (2.5) can be used to determine q. When

these functions are unknown but C, F, G are known then we replace (2.5) by (2.10)

and obtain a relation of System I. Further, we consider only those solutions of System I

which satisfy (2.5). That is, (2.5) becomes part of the boundary data.

Now, we shall show that the basic system is determinate when the internal energy of

a non-equilibrium fluid is properly defined.

Theorem 3. If the internal energy of a nonequilibrium fluid, e(p, S, q), is defined to

be the sum of the kinetic and deformation energies, as in an equilibrium fluid (cf. p. 269 [8],

then the relations (2.2)-(2.5) of System I or (2.24), (2.25), (2.33), (2.34), (2.36) of System
Ilia are linearly dependent for a nonheat conducting fluid (cf. p. 957 [6]).
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Proof. Let us define e by (cf. p. 269 [8])

+ (2.38)

where d/dt is defined as

- »' », (2.39)

By use of the first law of thermodynamics for a nonequilibrium fluid and (2.4), (2.5),

we find (cf. p. 957 [6]) that the rate of loss of internal energy per unit volume de/dt

(which is converted to kinetic and potential energy) is

I = =fdft (2"40)
expanding the second term in the right hand side of the identity (2.38), we obtain

d£-2d-^ + "d"'+"'d"'- (2-41)

If we multiply the equations of motion (2.2) by v', we find

0 = | + v' d,P- (2.42a)

Multiplying the equation of continuity (2.3) by (pp~l), we obtain

o = p ey + 2v< diP. (2.42b)
p

By adding the corresponding right and left sides of (2.40), (2.42a) and (2.42b), we obtain

the identity (2.41). This verifies the linear dependence of (2.2)-(2.5) of System I. Since

(2.42a) can be obtained by multiplying (2.33), (2.34) by b, c, respectively, and adding

the resulting equations, the linear dependence of (2.24), (2.25), (2.33), (2.34), (2.36)

of System Ilia follows directly.
From Theorems 2, 3 and Definition 3, we find

Theorem 4. The relations of System Illb (see Definition 3b) form a system of six

equations in the six dependent variables c, b, p, S, q, q (the modified System Ilia) which is

equivalent to the original System I.

Proof. The verification of this result stems from the following facts about (2.34):

(1) this is an equation of System Ilia (cf. Definition 3a); (2) this equation depends

linearly on (2.19), (2.24), (2.33) and (2.36) of System Illb (cf. Theorem 3); (3) the
System Ilia is equivalent to System I (cf. Theorem 2).

Because of Theorem 4, we shall consider only System Illb or (2.19), (2.24), (2.25),

(2.33), (2.35) and (2.36) in our future work.

By a similar procedure to that used in determining System Ilia, we find that the

components of the vorticity vector (where e'v" is the permutation tensor density)

»' = e'" d„v, (2.43)

are (cf. p. 240 [1])
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aH,- = cpkuk — p + b(n'pk — np') djtk , (2.44)

Ah
co'n,- = p - , (2.45)

w#p>- = Tt ~ r " ~ C^M'- <2-46)dz dn

3. A special class of flows in relaxation hydrodynamics. In this section, we study

the case where: (1) the characteristic surfaces consist of a family of planes parallel to

the parallel lines (x3 = variable); (2) the bicharacteristics are a family of lines in any

characteristic plane. Following a procedure similar to that of Tan [3], we assume that

the family of characteristic planes with unit normal vector n1, envelope a right cylinder

C, whose generators are parallel to the x3 = variable coordinate lines of the orthogonal

Cartesian coordinates x1, (j = 1, 2, 3). Let C intersect x3 = 0 in the curve C and let

*s' be the unit tangent vector to C. Further let C* be a specific orthogonal trajectory

of the lines L tangent to C, (i.e. C* is an involute of C (cf. p. 30 [10])). Now if 9 denotes

the angle between any line L and the re1-axis (that is, the line x = 0, lying in the plane

x3 = 0), then we can assume *s'(6) is of class C1 in 9. Evidently, *s' lies along the lines

L. Again, if s(6) denotes the arc length along C from a point 0' to a point Q where L is

tangent to C, then for any constant, a, the distance

QP* = a - S (3.1)

determines a point P* where an orthogonal trajectory, C*, intersects L (cf. p. 31 [10])-

We shall consider an orthogonal coordinate system where the coordinate surfaces

are: (1) the planes, z = 'x3 — constant; (2) the planes, 6 = 'x2 = constant, which en-

velope the right cylinder, C; (3) the right cylinders, a = 'x1 = constant, which intersect

any plane, z — 'x3 = constant, in an orthogonal trajectory of the lines L', which lie in

z — constant and are parallel to L. The vectors *s', n', k' are the unit vectors along the

a = variable, 6 = variable, z = variable coordinate lines, respectively, and oriented so

that for positive sensed *s', n', k', the variables a, 6, z, respectively, are increasing. It

follows that the ordered triad *s', n1, k' forms a right handed system.

In the a, 0, z coordinates, the element of arc is

ds2 = (A da)2 + (B def + (C dzf (3.2)

where, since z and a measure distance (see (3.1)),

A = C = 1. (3.3)

Theorem 5. The metric coefficient B oj (3.2) is

B = a - s = R* (3.4)

where R* is the radius oj curvature oj C* at P*.

Proof. Since QP* of (3.1) is normal to the involute C* of C, B must be the radius

oj curvature oj C* at P*. From a well known result (cf. p. 31 [10]), we find for a plane

curve C that B is given by (3.4) (where s(0) is known when C is specified).

From (3.3), (3.4), the Christoffel symbols of the first and second kind (cf. p. 17 [9])

are easily computed. First, we find the metric tensor for 'x1 = a, 'x = 9, 'x = z. Use
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of (3.3), and (3.4) leads to

'ffn = = lj 'd22 = (a ~ S) , 'fif.j = 0 (3.5)

V' = V3 = 1; 'g22 = (a-s)-\ V' = 0 (3.6)

where t j. The only nonvanishing Christoffel symbols are:

22
1

12
2 [?] - "<«"

= « - s, = _(« - s)s' (3.7)

r?2 = (« - «)-\ r222 = (a - s)"V, rj2 = -(a - s) (3.8)

where primes denote derivatives with respect to d, that is

 - I- (3.9)

The (a, 0, z) components of t', *s', k', p', n', £, , are

/'(a, 0,6); V(1,0,0); *'(0,0,1),

fib, 0, -a); n'[0, (a - s)_l, 0], (3.10)

/,(a, 0, b)

where if \{/ is the angle between V and *s'

a = cos ip, b = sin \p (3.11)

The ordered triad t', p', n' have been ordered so that they form a right hand system.

With the aid of (3.3)—(3.11), the intrinsic forms (where V,- denotes the covariant

derivative)

dC dC dc — j kr-i i -k i t—i i
dT'dJ'd^'ui'pnvJi'pnvkti

can be evaluated. We find by use of (3.10)

dc _ dc . r dc
77 = «:—H o — ,
dt da dz

dc rdc _ dc .
^-hTa-"Jz' (3'12)

dc , ._i dc
d^=(a~S) Ti

Two types of families of straight line bicharacteristics will be considered: (1) bi-

characteristics in each characteristic plane form a family of parallel lines and hence the

angle \p of (3.11) is a C1 function of only 6; (2) the bicharacteristic in each plane M form

a family of lines all of which pass through the point Q of the curve C and hence the angle

\p of (3.11) is a C1 function of d and z/(a — s), as QP* is (a — s) by (3.1). Thus, we de-

fine the two families of bicharacteristics by

Definition 4. Case a will consist of bicharacteristics determined by t1 of (3.10)

where i/< = ip(d)] Case b will be such that t' of (3.10) have \p = w) where

w = —— (3.12b)
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A further generalization of Case b can be derived by replacing Q by any point Q*

which is obtained by translating the line QP* through a distance z(6) parallel to the

z-axis, where z{6) is an arbitrary C'1 function of 6. Then (3.12b) must be replaced by

w = Z^- (3.12c)
a — S

Evidently, Case a is a special subcase of Case b. Since n' is orthogonal to C at P*, from:

(1) the Frenet-Serret formulas for C*; (2) the relation (3.4); (3) the fact that the ordered

triad *s', n', h' forms a right hand system; (4) the component relation for *s' in (3.10),

it follows that for a > s

u' : -(a - 0, 0). (3.13)

Further, since in Case a, p', V are congruences of straight lines, we see that

m' = w< = 0. (3.14a)

Finally, by use of (3.7), (3.8), and (3.10) and a direct but lengthy computation, we find

for both Cases a and b

pVW, = -(« - a)"1 fj , (3.15)

pVV*<, = 0. (3.16)

For Case b, (3.14a) must be replaced by

m' = 0, w< = kt' (3.14b)
where

k s -[z* + (a - s)2]"1/2. (3.14c)

Thus, both Cases a and b can be treated simultaneously by: (1) introducing the curva-

ture k and allowing k of Case b to vanish for Case a; (2) assuming is a C1 function of

6 and w in Case b.

In our future work, we shall consider scalar functions, /, which are C1 functions of

6 and w (see (3.12b)). For such functions, we find

df _ w dj_
da a — s dw '

§1 = 1 df
dz a — S dw

By use of (3.12), (3.17a, b), we can define four operators Q, P, M, L by

§1 = nm = il
dt V[JJ a - s dw'

§L , ™ il
dn a — s d6 '

I- 1,dp a — S dw

L[f] s bQ[f] + cP[f].

(3.17a)

(3.17b)

(3.17c)
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Now, we find the (a, 6, z) coordinate form of (2.19), (2.24), (2.25), (2.33), (2.35)

and (2.36)

Theorem 6. The System Illb in (a, 0, z) coordinates is

L[q\ = q, L[S] = q\KT)'1, (3.18)

L 2_
K

+ J2 L[p] = + Gq, (3.19)

PL[b) = —i- AQ[P] - BQ[S] - CQ[q], (3.20)

(a — s)

pba

pjb _jcb_ M = +
— S) a — s \dd/

- pbk + L[P] + P{Q[b] + P[c]} = 0. (3.22)
a — s

Proof. The proof follows by evaluating the terms of System Illb by use of (3.12)-

(3.17).
For the vorticity vector in the special coordinates (a, 6, z), we obtain

Theorem 7. The components of the vorticity vector are

Ua = a{—M[c] - + b{Q[c] - P[b]J,

«. = b{-M[c] b—^\ - a{Q[c] - P[b}\ - , (3.23a)
I, a — s d0) a — S

= M[b].

Proof. The above follows directly from (2.44)-(2.46) by use of (3.10), (3.12)-(3.16).
As a check on the above calculations, we consider (3.18)-(3.22) for a plane equi-

librium Prandtl-Meyer isentropic simple wave flow. In this case, we have for S,t a

constant

a = 1, 5 = 0, k = 0

K=q=q = C = 0, S = S0 , (3.23)

db 13c dp db dc dp

dz dz dz da da da

Thus, the operators P, Q, M of definition 5 become

QUI = M[f) = 0, P[f] = (a - s)-1 fe (3.24)

By use of (3.22), and (3.23) and the definition of L[f] of (3.17), the relations (3.20),

(3.22) become

te - <3 25>

Pb + ^ (pc) = 0 (3.26)
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and (3.18), (3.21) vanish identically. However, (3.19) will be identically satisfied if

and only if we consider that (3.19) has been obtained from another initial equation by

division by K. The relation (3.25) is well known in Prandtl-Meyer flow (cf. p. 265 [2]);

the relation (3.26) is an intrinsic form of the continuity equation. From (3.23a) it follows

that the (a, 9, z) components of the vorticity vanish or

J = 0. (3.27)

The results of Tan [3] can be obtained by replacing the first relation of (3.23) by

a = cos yp, b = sin \p (3.28)

where \p is a C1 function of 8. Then, (3.20)-(3.22) becomes

db/dd = — c cos \p, (3.29)

—c sin \p = b d\p/dd, (3.30)

— pb cos \p = d(pc)/dd. (3.31)

The relations (3.29) and (3.30) are essentially those due to Tan (cf. (4.5), (4.6) [3]).

4. Simple waves. In a previous paper [5], we classified flows in relaxation (non-

equilibrium) hydrodynamics into two classes: Class I, K is not constant and is a C1

function of p, S, q: Case II, K is not constant and is a C1 function of x', t. For simple

waves in the (x, t) plane, we showed that K equal to a constant has almost all of the

properties of simple waves of Case I. The basic property of this case and Case I (for

simple waves) was that c, b and all of the thermodynamical variables were C1 functions

of p. However, in Case II, the variables c, b and all the thermodynamic variables, ex-

cept q, K, were C1 functions of p. Also, for this case, K/q was a Cl function of p.

At present, we shall not discuss all simple waves in three-dimensional steady flow.

Instead we introduce three special classes of simple waves.

Definition 6. Simple waves of Case I satisfy the following three conditions: (1)

the characteristic surfaces are a family of planes which envelope a right cylinder: (2)

the bicharacteristics are a family of parallel lines in each characteristic plane; (3) c, b,

ip (see (3.11)) and all the thermodynamical variables are C1 functions of p.

From the above definition and the fact that \p is defined in terms of the angle 6 of

the (a, d, z) coordinate system, we conclude that

Theorem 8. In simple waves oj Case I, all the thermodynamic variables and c, b, \p

depend on only 6.

Now, we study (3.18)-(3.22) for simple waves of Case I. The operators Q, P, L, M

of (3.17) are given by (3.23). By direct computation, using (3.23) to evaluate the above

operators and noting that c, b and all of the thermodynamical variables are constant or

Cl junctions of 6,we find from the first equation of (3.18) that a constant q0 exists so that

q = 0, q = q0 . (4.1a)

From (4.1) and the second relation of (3.18) we see that a constant S0 exists so that

S = S0 . (4.1b)

Further, (3.19) has Cl solutions p(6) if and only if: (1) K does not vanish, C goes to zero as

q does; (2) C/q approaches a limit junction, *F(p). Then, (3.19) furnishes the following
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equation

*FK2 dp/dd = p2 dK/dO. (4.2)

Finally, (3.20)-(3.22) imply the generalized Prandtl-Meyer relations (3.29)-(3.31).

Thus, we obtain

Theorem 9. The only relaxation simple wave flows oj Case I are (cj. p. 26 [5]) the

equilibrium flows (q = q0) of constant entropy, propagating at the "frozen" speed A (see

(2.12)-(2.15)), which are generalized Prandtl-Meyer (that is, \p, b, c are solutions of

(3.29)-(3.31). The relation (4.2) determines K as a function of p.

In order to obtain a new class of simple waves, we introduce

Definition 7. The simple waves of Case Ha will satisfy properties 1, 2 of Case I

but property 3 will be replaced by: c, b, \p and all of the thermodynamical variables,

and q/K (but neither q nor K) will be C1 functions of only p.

Since \p is a function of only 6, it follows that, for Case Ha, the variables, c, b and

all of the thermodynamical variables except K, q are C1 functions of only d. Thus, our

present definition of Case Ha is an extension of the definition for simple waves of Case

II for nonsteady one-dimensional flows (cf. p. 124 [5], and also Case a of definition 4).

Next, we verify

Theorem 10. Simple waves of Case Ha have the following properties:

(a) the ratio K/q is constant along any bicharacteristic]

(b) K, q, S, q, p are linked by three ordinary differential equations',

(c) p, \p, c, b satisfy the generalized Prandtl-Meyer relations (3.29)-(3.31).

Proof. From (3.17), we see that (3.18) leads to

cq' = (a — s)q, (4.3)

cKTS' = (a - s)q (4.4)

where q', S' represent the derivatives of q, S, respectively, with respect to d. Dividing

the equations (4.3), (4.4), we obtain

K = q*G, (4.5)

where

*(7(0) = q'ITS'. (4.6)

The relations (4.5) and (4.6) verify (a). It should be noted that a similar result is valid

for simple waves in the (x, t) plane (cf. Theorem 14 [5]).

When / is p or q/K then (3.17) becomes by use of (4.3), (4.5)

L[P] = , (4.7)
a — s

<L
K

Thus, (3.19) reduces to

'T p' + \T ~ G*G

— *G'r
(4"8)

')«' - ifr = °- (4-9a)
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From (4.3) and (4.4) and definition 7, it follows that C1 functions q*(9), K*(6) exists

so that

q* = (« - s)q, K* = (a - s)K (4.9b)

The equations (4.3), (4.4) and (4.9) are the three ordinary differential equations linking

q, S, p, q*. When c, b, a, p and the thermodynamical coefficients F, T are known then

(4.9) determines q as a function of 6, and (4.3) furnishes q*. For any C1 function S(0),

the scalar K* is determined by (4.4).

The relations (3.20)-(3.22) lead to the generalized Prandtl-Meyer relations (3.29)-

(3.31) as

Q[P] = Q[S] = Gfo] = 0, (4 10)

M[P] = M[/S] = M[q] = 0.

In order to show how the previous theory may be used to classify simple waves,

we introduce one additional type of very special simple wave.

Definition 8. Simple waves of Case lib will satisfy property 1 of Case I but

Properties 2 and 3 will be replaced by: the bi characteristics form a family of radial lines

in each characteristic plane; all the variables, and q/K, but neither q nor K, will be C1

functions of p, S (cf. Case b of Definition 4).

By use of (3.12b), (3.14c) we find that k can be written as

Jc = -i/(a - s)(l + wy\ (4.11)

Theorem 11. Simple waves of Case lib are generalized Prandtl-Meyer waves in

which c, b, p, satisfy (cf. (3.29)-(3.31))

db/dd = —c cos \p — (b/c)(—bw + a) dc/dw + Ci/pc, (4.12)

—c sin \p = b drp/dd — C2/pe, (4-13)

pb cos * - + h(pc) + (~aw + 5){p lt~bd£) = 0 (4'14)

where Ci , C2 are Cl function of 6, w, which are arbitrary except for the algebraic condition

— Ci(w sin \p + cos = C2( — w cos ^ + sin if). (4.15)

Proof. By substituting (4.11), (3.17c) into (3.18) and (3.19) we obtain

b(-aw + b) ~ + c || = q(a - s), (4.16)

b(-aw + b) ~ + c || = q\KT)~\a - s), (4.17)

} ( - i h\ i -3^A') . Cbi_aw + b)-^- + c-irr + 7
t / , dp , dp
6(_aw+6)_ + c_

+ c ~ (q/K) = (qG - q2FT~1K~l)(a - s). (4.18)

Since p, S are independent, we can assume that they are C1 functions of 6, \p and that these

variables are C1 functions of 6, w. Hence from (4.16)-(4.18), it follows that Cl functions q*,
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K* exist so that

q = q*/(a — s), K = K*/(a — s) (4.19)

where q*, K* are functions of only 6, w. Then (4.16)-(4.18) are independent of (a — s),

and consist of three partial differential equations for the five dependent variables p,

q, S, q*, K*. Further, from (2.12)-(2.15), the definition of c, b in (2.17), and the condi-

tion that all the thermodynamic variables, except q, K, are constant along a bicharac-

teristic, we see that p, c, b are C1 functions of only 9, w. Hence, if p, q, S, q*, and K*

satisfy (4.16)-(4.18), (4.20) where

A~ + B^-+ 0—^=0, (4.20)
dw dw dw

with Ci a C1 function of only 6, w, and if c, b, \p, C2 are Cl functions of only d, w, which

satisfy (4.12)-(4.15), then (3.18)-(3.22) are satisfied and simple waves of Case lib

exist. It should be noted that (4.12)-(4.15), (4.16)-(4.18), (4.20) are eight equations

(seven first order partial differential equations and one algebraic equation) for the ten

unknowns c, b, \j/, C\ , C2 , p, q, S, q*, K*. Hence, the system is undetermined and has

two or more families of solutions.

An especially simple case arises when the characteristic planes are a family of parallel

planes and the bicharacteristics are a family of radial lines of the circles in any charac-

teristic plane where the centers of these circles lie on a line parallel to the x, y plane.

In this case, the above family of algebraic and differential equations reduces to five first

order ordinary differential equations (with w as the independent variable) and three

algebraic equations for the ten dependent variables p, S, q, etc.

Finally, we shall determine for what reacting fluids the above simple waves of

Case I exist. Following the work of T. Y. Li [11], for the case of a simple dissociating

gas, we assume that the specific enthalpy, h, and the pressure p, are known C1 functions

of q, p, T and prove

Theorem 12. In the equilibrium steady state (q = 0) of a chemically reacting fluid,

ij h arid p are C1 junctions of p, q, T such that the following Jacobian does not vanish

J q, C
■P,T.

(where C is defined by (2.8)) and

lim -■ = *F
a-*0 Q

exists, then simple waves of Case I exist.

Proof. If we assume that

h = h(q, p, T), p — p(q, p, T) (4.21a)

are known C'1 functions of their arguments (for the simple dissociating gas, cf. p. 173

[11]), then the thermodynamic relation (cf. p. 170 [11] and pp. 5, 3 [12])

T dS = dh — ~ % dq (4.21b)
p A
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becomes

T dS = G dq + F dp + H dT (4.22)

where

A dh 1 dp q

t . 55 - 1 (4 23)
dp q dp

Jj dh 1 dp

dT q dT'

The condition q — 0 leads to a relation of the form (for a simple dissociating gas, cf.

p. 173 [11])

q(p, q,T) = 0 (4.24)

which defines the equilibrium state. Further, the condition C — 0 leads to

C = ?) = Jr) ?) + ?) = °- (4"25)dq/s.p dTlp%q dq/s.p dq/yiP

The coefficients

p,0'

can be computed from (4.21a). Also, if we assume dS = dp = 0 in (4.22), we find

dT\ G
, ; - -a- (4-26)dq/ s.p H

Thus, (4.25) leads to a relation of the form

C(p, q, T) = 0.

From (4.24), and (4.25), when q is constant

* 0 (4.27)

we can find p, T as functions of p. Hence, in the equilibrium state (q = 0) of a "proper"

reacting fluid, one of the two basic conditions for the existence of simple waves of Case I

is satisfied. The word "proper" implies that the functions of (4.21a) and (4.24) are

known and (4.27) is satisfied. The limit function

*F = lim r- (4.28)
a-»0 Q

must still be shown to exist.

In the case of the ideal simple dissociating gas of Lighthill [11], [13], the computa-

tions are easy and lead, for arbitrary constants a, b, c, d, to

aq 5= q2 - (1 - q)K, (4.29)

C = bpT -f- cp -t- dTp (4.30)
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where R2, e* are constants and K is some known function of p, q, T. Evidently, for proper

K, (4.27) will be valid and *F will determine a function of p (see (4.28)). Such a K is

[q /{1 — <?)] + II(C, p, p) where II is a diiferentiable function of C, p, p so that when

C vanishes, dll/dC is not zero, H(C, p, p) is zero.
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