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DYNAMIC SNAP-THROUGH OF A SIMPLE VISCOELASTIC TRUSS*

BY

W. NACHBAR and N. C. HUANG
University of California, San Diego

Abstract. In order to understand the behavior of shallow structures in dynamic
snap-through or buckling, a detailed study has been made for a plane, viscoelastic,
three-hinged truss with a concentrated mass at the central hinge, and with a normal
load of constant magnitude applied suddenly at this hinge. The dynamic buckling
criterion is found to correspond to values of the parameters for which the solution goes
into the saddle point of a two-dimensional autonomous system. It is shown that another
dynamic buckling criterion, based upon the asymptotic behavior of solutions in time,
can give incorrect results in certain cases. Two methods to compute buckling loads
are investigated with the aid of a phase plane diagram and potential curves. Approxi-
mations to the buckling load, including an upper bound, are computed by means of an
energy integral method. The exact buckling loads are computed by numerical integra-
tion of the governing differential equation.

1. Introduction. In recent years, much attention has been given to problems of
the dynamic buckling of structures on account of their importance in engineering. In
this paper, we shall be concerned with a basic study of dynamic snap-through be-
havior by considering a plane three-hinged simple truss with a concentrated mass at
the central hinge as shown in Fig. 1. The material of the structure is assumed to be
viscoelastic with a stress-strain relation represented by the Voigt (Kelvin) model. A
concentrated load is suddenly applied to the central hinge and is maintaii -d thereafter.
The purpose of this paper is to find the critical magnitude at the load for snap-through
under various conditions.

The static snap-through problem of the same structure was investigated by Mises [1]
for the elastic case and by Ilult [2] and Huang [3] for the linear and nonlinear visco-
elastic cases. In the two latter cases, the viscoelastic materials are assumed to be capable
of flow without limit, and snap-through always occurs. The Voigt solids behave differ-
ently. The deformation of a Voigt solid asymptotically approaches a delayed elastic
equilibrium state, and snap-through of the structure will not occur if the magnitude of
load is below a certain critical value.

In order to achieve a thorough understanding of this problem, we shall employ the
aid of both the phase plane diagram and the potential curves in our analysis. Two methods
are used: the energy integral method and the direct method. The direct method is
based upon the numerical solution of the governing differential equation and initial
conditions. The energy method is an extension to dissipative systems of a method
previously applied to elastic structures; in it the buckling load is determined, without
first finding the explicit solution, by the examination of stationary points on the po-
tential surface. Such an approach has been used in finding the dynamic buckling load of a
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shallow elastic arch [4], In the dissipative case, the buckling load cannot be determined
exactly by the energy method, but we will show that an adequate upper bound can be
obtained. In this method, some use is made of the properties of critical points of a
plane, autonomous system of differential equations, ([5], [6], [7]). The system under
study (see Eqs. (10a, b) below) is of the Lienard type ([7, p. 267]) which has received
much attention, although apparently not for the type of physical problem that is con-
sidered here.

2. A simple plane truss model. In Fig. 1, a symmetrical linkage of two massless
straight bars, each of undeformed length a sec 90 and cross-sectional area A, is shown
attached by frictionless pins to a mass M and to supports. The load P is applied to the
mass M at time t = 0+ and is held constant thereafter. Gravity is neglected. The as-
sumption [h{t)/a]2 « 1 will be made for all t from t = 0 to t at a critical value. Hence,
the approximations 6 = h/a, 9a = h0/a will be valid. Relevant equations are therefore
(see Fig. 1): strain-displacement,

a sec 9 — a sec d0 1 ,,2 ,2N
e = = 2? {h ~ho)' (1>

motion, F being the axial force in each bar,

J 2

2F sin 9 + P = M Qi0 — h); (2)

and the constitutive relation for the Voigt material,

(3>

It is assumed that the straight bars do not buckle, o that a = F/A.
Introduction of the nondimensional nomenclature

y = h/h0 , r = tUhlE/Ma3)1'2, V = Pa3/hlEA,

k = 2i)(Ati,/a ME)in (4)

Fig. 1. Geometry of the Plane Truss Model.
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enables the writing of Eqs. (1), (2), (3), respectively, as follows for shallow trusses:

6 = to? {y2 ~ 1} (5a)

£ _ hi p + y
E 2 a2 y

2 - e + (5b)

where ( ) = d/dr ( ). Upon substitution from Eq. (5a) into (5b), there is obtained a
single equation for y(r):

y + Ky2y + y* - y + p = 0, r > 0. (6)

The initially undisturbed structure has the initial conditions

2/(0+) = 1 and 2/(0+) = 0. (7)
The energy integral is obtained from Eq. (6) by multiplying both sides of the equa-

tion by y and integrating from r = 0 to an arbitrary r, while taking into account the
initial conditions, Eq. (7). The equation obtained,

\ + 1(1 - y2)2 + p{y ~ 1) = -«I' yY dr', (8)

represents conservation of energy in nondimensional form for the actual motion y{r).
That is, K, U and D are, respectively, nondimensional forms of the kinetic energy, total
potential energy and total dissipated energy:

K = W, U(y, p) = i(y2 - l)2 + p(y - 1); D = k f yY dr'. (9)
Jo

Equation (8) states that K + U + D = 0 is an integral of the motion.
By the substitutions Xi — y, x2 — y, Eq. (6) can be put into the form if a two-di-

mensional, real, autonomous nonlinear system for r > 0:

Xx = x2 (10a)

x2 = —kx\x2 + Xi — x\ — p (10b)

with initial conditions

£i(0) = 1 and a;2(0) = 0. (10c)

Use will be made of the theory of such autonomous systems (see [5], [6], [7]) to determine
the qualitative behavior of the solutions describing positive half-characteristics (or
semiorbits) in the (x, , x2) or (y, y) phase plane. It is known that critical points for such
a system on the phase plane are those points for which the right-hand sides of Eqs.
(10a, b) vanish simultaneously. These are defined by

V = o (11a)

and the real-valued roots of the equation

y3 - y + P = 0. (lib)

The real-valued roots of Eq. (lib) can be expressed explicitly for ranges of the load
parameter p in the following way. For 0 ^ p ^ §(3)-1/2, let 3a = sin-1 [3(3)1/2p/2],
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Fig. 2. Critical Points j/, as Function of Load Parameter p.

where 0 ;£ a g ir/6. Then the roots are y = y<, i = 1, 2, 3, yx 2: y2 ^ 0 > 7/:i (Fig. 2).

7/t = cos a — sin a (12a;
o

2
2/2 = gT72 sin a (12b)

y3 = -cos a - ^72 sin a. (12c)

At p = f(3)~1/2, roots 2/1 = 7/2 = 1/31/2. For p > f(3)~1/2, there is only one real-valued
root. Lei, p = 3(3) ,/ap/2 and consider f 1:

?/:, = -3^72 [(P + (p2 - l),/2),/3 + (P - O'2 - l),/2),/3J. (I2d)

The behavior of solutions to the nonlinear equations (10a, b) in the vicinity of each
of the three critical points xx — y, , x2 = 0, i = 1, 2, 3, is found from examination of the
linear perturbed system. Upon substitution of x\ — xx — ?/, , x\ = x2 into Eqs. (10a, b),
and upon linearization with respect to xLk , there is obtained the linear system

if = X2 (13a)

±2 = (1 — 3ytyxl' — nyWi, i = 1, 2, 3. (13b)
The eigenvalue equation (xLk = ak exp Xr) has roots X,< , j= 1, 2, for each 1/,■ , t = 1, 2, 3.

X.,
X2i ± (Ktf + 1 - 3yj . (14)

For 0 < p < 1, it follows from Eq. (14) and Fig. 2 that (1 — 3y\) < 0. This means
that the Toots Xn for small k are conjugate complex with negative real part, while for
larger k{k > 3), \n are real and X2i < Xn < 0. For small k, then, yx is a spiral point
(vortex point or focus) with a clockwise rotation about Xi = yx , x2 = 0 in the phase
plane, while for larger k, yx is a nodal point (improper node). In either case, y, is stable
both for the linear and the nonlinear systems.
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Since (1 — ?>y\) < 0 for all p Si 0, similar conclusions are reached for the critical
point y3 ; it is either a spiral point or a nodal point, and it is stable.

For 0 < p < 1, (1 — 2>y\) > 0; hence, it follows from Eq. (14) that X12 and X22 are
both real and X22 < 0 < X!2 . Thus, y2 is a saddle point for all « § 0. Further discussion
of the saddle point is reserved for Sec. 4 below. For p = 1, the critical points and y2
coalesce; the coalesced critical point is not an isolated critical point and so is not stable.

The pertinent results from well-known theorems on differential equations may be
summarized for present purposes as follows. Since the right-hand sides of Eqs. (10a, b)
each possess continuous partial derivatives of all orders with respect to , x2, p and k,
then for all real values k and p there exists a unique solution to Eqs. (10a, b) in every
arbitrary bounded domain R in the phase plane containing the initial point (10c).
Furthermore, these solutions are continuously differentiable functions of p and k, and
are continuous with respect to small changes in the initial conditions (10c) as well. The
asymptotic behavior as t —> <» of the solutions to Eqs. (10a, b, c), or, equally, of the
solutions to Eqs. (6) and (7), is classified by the Poincare-Bendixson theorem and the
Bendixson theorem for the cases of isolated critical points, (see [5, Chapter 16, Theorem
2.1 and 3.1]; also [6, Chapter 10, Theorem 8.1]). These theorems state that the behavior
of the characteristic falls into one of the following mutually exclusive categories: the
characteristics either approach a critical point asymptotically; or they approach asymp-
totically a limit characteristic which tends to a critical point; or the characteristic is a
periodic orbit that contains only regular points; or the characteristic approaches a
periodic orbit (limit cycle) asymptotically.

For k > 0, since D (Eq. (9)) is a monotonically increasing function of time, no
periodic solutions (periodic orbits or limit cycles) can exist. For k = 0, the characteristics
in general are periodic orbits enclosing either yx only, or both yi and y2.

The limiting case of quasi-static buckling is readily understood from °ig. 2. If the
load P, instead of being suddenly applied at time t = 0, is applied as a very slowly
increasing function of time, then for sufficiently small values of p the motion will follow
a succession of equilibrium states defined by the curve in Fig. 2 labelled ?/! .
For p > f (3)~1/2, however, there is no continuous path of equilibrium states; the critical
point yx no longer exists. Hence, the quasi-static buckling load is p — ps , where

p, = 1(3 r1/2 = 0.385. (15)

It follows that, for the case of suddenly applied loading, the dynamic buckling load
pb must approach p„ as k or 17 assume sufficiently large values. The motion y{t) is de-
termined in this case by neglecting y in Eq. (6), giving

1 = 1? f / ^  (16)£ Jvm p + y - y

From Eq. (16), it is seen that as t —<*> the motion approaches yi for p < p, and y3 for
p > p. ■

The behavior in the quasi-static case would motivate adoption of the following
definition for dynamic buckling in the case of finite k:

Definition 1. Snap-through or buckling will be said to have occurred whenever
the motion as described by its characteristic in the phase plane either is not a periodic
orbit enclosing yL only or docs not approach asymptotically either ?/] or a limit cycle
around yt only.
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This definition would allow the decision as to whether snap-through has occurred
to be made solely on the basis of the asymptotic behavior in time. The theorems of the
Poincar6-Bendixson theory assure us that buckled motion according to Definition 1
would always in its asymptotic behavior include or approach critical points other
than y\ .

In the physical sense, however, the truss would be regarded as having buckled if the
amplitude of motion exceeded the amplitude corresponding to y3 at any time, regardless
of whether the asymptotic behavior of the motion satisfied Definition 1. Indeed, it is
shown in Sec. 5 below that, for very special but yet physically possible values of the
parameters, the truss will have buckled in the physical sense even though the motion
is unbuckled according to Definition 1. Consequently, Definition 1, although mathe-
matically satisfactory, is inadequate to distinguish physical snap-through in all cases.
The following definition is preferred:

Definition 2. Snap-through or buckling will be said to have occurred whenever
the amplitude of motion exceeds the amplitude corresponding to the saddle point y2
at any time.

The dynamic buckling load pb is defined to be the largest value such that, for all
p < pb , buckling according to Definition 2 does not occur.

3. Energy integral method. For the limiting elastic case, k =0, Eq. (8) can be used
to determine pb without first obtaining y(j). It is seen from Eq. (9) that the equation
dU/dy = 0 is equivalent to Eq. (lib), so that the three roots y, are also the values
which make U(y, p) stationary in y for fixed p. Figure 3 shows, however, that yx is a local
minimum and y2 a local maximum for U. Since K 0, then U ^ 0 is a necessary con-
dition on the motion, and hence no buckling is possible unless U(y2 , p) ^ 0.

On the other hand, if U(yt , p) < 0, it is seen from Fig. 3 that there is

Fig. 3. Total Potential Energy U as Function of ;
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some y = yp , — » < yv < y3 < —1, for which U(y, p) < 0 on yp < y < 1,
and U(yp , p) = 0. On yp < y < 1, therefore, K does not vanish and y does not change
sign. Let x, — (r) satisfy Eqs. (10a, b) for 0 < r < r„ , and satisfy Eqs. (10c), and
let ^"(rj = yp , x2u (rp) = 0. Then, for rp ^ r g 2tp , xx = x[v(2tp — r),
x2 = — X2U(2tp — t) is the extended solution, and so forth. The solution to Eqs. (10a, b)
is therefore periodic with period 2r„ , and the characteristic is a periodic orbit in the
phase plane enclosing both yx and y3 . Buckling occurs, then, if U(ij2 , p) <0.

Therefore, U(y2 , p) =0 is the necessary and sufficient condition to determine the
unique dynamic buckling load pb . In place of the two conditions U(y, pb) = 0
and dU(y, pb)/dy — 0, an equivalent single condition is found. Let the function
p{y) be defined by the equation U(y, p{y)) =0. The buckling condition is then dp/dy = 0.
From Eq. (9), the buckling condition is (since y2 ^ 1)

1(2/2 + l)(yl ~ 1) + Pb = 0.
Since y2 and pb also satisfy Eq. (lib), then by eliminating pb ,

i(V2 + 1) = y2 or y2 = 1/3. (17)

Substitution of y2 into Eq. (lib) gives the elastic dynamic buckling load, pb = p„ :

pe = 8/27 = 0.296. (18)
For the viscoelastic case, k > 0, we have U < 0 for r > 0, since K ^ 0 and D > 0.

As stated above, if p < 0.385, then the potential U{y, p) is stationary at three distinct
points y — y^ . It is shown in the following section that for each k > 0 there is a unique
value pb with the following properties. When p = pb , the local maximum. (Fig. 3) of the
potential curve at y = y2 can just be reached asymptotically at infinite time. Since
y — 0 at the maximum, then K = 0 and U = —D at the maximum. When p < pb ,
the variation of U during deformation of the structure is restricted to a ti ough-shaped
neighborhood about the minimum at y = yi . Due to strictly increasing energy dissipa-
tion, the value of U oscillates about this minimum and approaches it as a limit. When
p > pb , the maximum of the potential curve is reached and passed over; in this case,
the truss deforms towards the buckled equilibrium position at y = y3 .

Thus pb satisfied the definition of the dynamic buckling load as given above. In the
elastic case, pb is the smallest load for which the local maximum value of U is nonposi-
tive. In the viscoelastic case, the value of load necessary in order to just pass over the
local maximum of the potential depends on the viscosity factor k. The functional de-
pendence of pb on k is expressed by the continuous function pb = pb(K.) for « S 0. When
p S: 0.385, the local maximum of the potential curve no longer exists (Fig. 3). The
structure must then deform to a buckled position. Therefore, this value, p — p, (Eq. 15),
is an upper bound on p,,(k) for all k.

4. Phase plane analysis. For k > 0, the value of D, Eq. (9), depends upon the
solution y{r) to Eq. (6). If y(r) is unlaw,vn, the energy integral method will not yield
an exact value for the dynamic buckling load, as it did in Eq. (18) for k = 0. However,
the method can be used without solving Eq. (6) to determine approximations to pb .

First, r will be replaced by y as independent variable. Since for p > 0, 2/(0+) = 0
but J/(0+) < 0, then y{r) <0 in some right-hand neighborhood of the point t — 0
in the t axis. Then there exists some rp , 0 < t„ g «=, for which y(r) < 0 for r in the
range 0 < r < r„ , and y{rv) = 0. With the definition yp = y(.Tp), the function y(r),
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defined by

V(r) = 1 + [ y(r') dr',
J 0

is consequently monotone decreasing in 0 < r < rp , and there exists a single-valued,
continuously differentiable and monotone decreasing inverse function r = g(y) which is
defined on the interval yv < y < 1 with g(yv) = tv and g(l) = 0. The single-valued and
continuously differentiable function y = <t>(y) then has the following properties on
y, < y < i,

<t>(y) = y(g(y)) (19a)
0(2/) < 0 (19b)

*g-l (19C)

and, at the ends of the interval,
<t>(yp) = <HD = 0. (19d)

With use of Eq. (19c), the integral in Eq. (9) for D can be transformed on 0 < r < t„
by substitution of the integration variable y' for r':

D = k [T y\r')y\r') dr' = * f y'2<t>{y') dy'.
J o J\

Equation (8) can therefore be written as

p(i - y) = hMi)Y + i(i - yT +« f' y'2[-<t>(y')l dy' (20)
J v

for all y in yv < y < 1. Also, in view of Eq. (19d),

p(i - yi.) = id - yl? + * J dy. (21)
For given positive values of p and a, if y„ has been determined, and if an upper bound
can be found for —4>{y) on yv < y < 1, then it is evident that Eq. (21) will yield an
inequality that will give an upper bound on p. One upper bound on ( — <f>) can be found
immediately from Eq. (20). We note that the last two terms on the right-hand side are
nonnegative; therefore,

p(i - y) ̂  my)V
and so, for yr g y g 1,

tk [2p(l - y)]l/\ (22)

It will be shown now that, for p = pb , we have yp = y2 , where y2 is the known
function of pb given by Eq. (12b). This statement has already been shown to be true
for k = 0.

For positive k, we examine on the phase plane the characteristic of the solution
Xi(t), x2(r) for t > 0 and, in particular, the portion of the characteristic for 0 < r g r„ ,
in which time interval the solution can be represented by the curve Xi — y, x2 — <j>(y)
according to the preceding discussion. If the function /(a^ , x2) is defined on the entire
phase plane as

f(xt , x2) = kx\x2 + — U(Xi , p) = KX\x2 + x\ — Xy + p, (23)
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then Eq. (10b) is simply x2 = — f(xi , x2). The curve in the phase plane along which
/ = 0 is given analytically by

* - -l! +p • <24>

and the several branches of this curve are shown by the dashed lines in Fig. 4. The
branches of the curve / = 0 divide the phase plane into domains in which either / > 0
or / < 0. The intersections of these branches with the line x2 = 0 are the roots of dU/dXt,
and these roots are the three critical points Xj = y( , i = 1, 2, 3.

The tangent slope angle 6 of the solution characteristic is given by

tan e = t* = - = ~(Xl ' (25)
Xy X2 X2

If x2 ^ 0, the characteristic of the solution has a horizontal tangent at its intersections
with the curve / = 0. These intersections are then stationary values—maxima or min-
ima—for the characteristic. The algebraic sign of x2 is opposite to the algebraic sign of /
in the domains between intersections, as is demonstrated by the characteristic illus-
trated in Fig. 4.

In particular, for the portion of the solution characteristic represented for 0 < r < r„
by xt = y, x2 = one can write j = —x^/xx , and so from Eqs. (19) and (23):

^ = y - -Ito,#), y,£y£i. (26)
For (jj < 0, d<t>/dy has the same algebraic sign as / and vanishes whenever 4>(y) intersects a
branch of the curve / = 0.

We now consider in the phase plane, for any fixed, positive value of k, the one-
parameter family of solution curves p, k) with positive p as the param ter and with
yv = V = 1- Theorem 1A and Collary in Appendix A show that away from the initial
point y = 1, curves of this family do not intersect either themselves or one another, and

i.o
— SOLUTION

I I 3 « \ x2"J7§f.*r*rPb'
Iau 3

 "r~3Xi"xi-Phr 0.5 ay b

Fig. 4. Phase Plane for k = 0.5, (pb — 0.3-J4).
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moreover, the curve x2 = 4>(xx ; p', k) lies everywhere below the curve x2 = cj)(xi ; p, «)
if p' is greater than p. It then follows, as is illustrated by the solid curves in Fig. 4, that
curves of this family must behave in the following mutually exclusive ways:

(a) the curve intersects the x2 = 0 line at xx = y„ for y2 < yp < yt ;
(b) yv = 2/2 ;
(c) the curve intersects the branch of the curve / = 0 at a point (xlp , x2p), where

0 < xlp < y2 and x2p < 0.

From Theorem 2A, Appendix A, we know that in case (a) above, yp is a continuous,
monotonically decreasing function of p. We have seen that y2 is a continuous, mono-
tonically increasing function of p, and so there exists a finite p = pb at which

Vv = 2/2 (pb) = Vb ■ (27)

There cannot be more than one such value pb, for otherwise there will be more than one
yb , and this would violate the nonintersection property. Hence, there is one and only
one value pb corresponding to case (b).

For case (c), xlv is a continuous, monotonically increasing function of p that ap-
proaches xlp = yb in the limits as p tends to pb from larger values. Hence, pb is the least
upper bound for p in case (a) and the greatest lower bound for p in case (c). In case (c),
it is evident from the geometrical considerations that y„ < y3 , and that the truss will
in consequence have at some time a deflection greater than that corresponding to y3 .
Conversely, for case (a), the deflection of the truss can never exceed that corresponding
to yb . Therefore, pb is the dynamic buckling load in accordance with Definition 2 above,
and it does represent the load above which snap-through will occur in the physical
problem.

5. Application of energy integral method for r > 0. We consider now the deter-
mination of approximations to the function pb(i<) by he use of an energy integral method.
For all k Si 0, let [—4>u{y', Pb, *)] be any integrable function which is known to be greater
than or equal to the solution [~4>(y, pb , «)] on y, g g 1 and for which [ — K<j>u], as a
function of k for each y and pb , is monotonically increasing with k. Equation (21) can
then be written as an inequality:

Pi,(l - yb) ^ i(i - yl)2 + * f y2[~<t>u(y;Pb ,«)] dy. (28)
Jvb

Since yb and pb satisfy Eq. (8b), then

Pb = yb - yl ■ (29)

Substitution from Eq. (29) into Eq. (28) gives

1(1 - yl)(i - yb)(3yb - l) ^ « f yb - yl,«)] dy. (30)
,»

For each value of yb in the known range | ^ yb ^ 1/31/2, let k* be the unique root
of the equation

i(i - 2/D(i - 2/t)(3i/6 - l) = k* f y2[-<t>u(y, yb - yl , «*)] dy. (31)•'i/i
With pb given by Eq. (29), inequality (30) then implies that

K > K*. (32)
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Thus, inequality (30) can be used to determine a lower bound k* on k for each pb , or,
conversely, an upper bound on pb for each k. We note that for yb = ?,/<* = 0, and so
k* = k for the elastic case previously discussed, (Eq. (17)).

As an example of application of this method, the upper bound of inequality (22) is
selected; we take

-<*>„ = [2pt(l - y)]wl = \2yb(l - 1 - y)u\ (33)

Since

y2{ 1 — y)U2 dy = rls(8 + 12yb + 15?/J)(1 ~ Vb)3/2IJ Vk

(34)

then Eq. (31) becomes
* = AOS (1 + yt)u\3yb - 1)

8 (2yb)1/2(8 + 12yb + 15yl)
With pb and k* computed parametrically from Eqs. (29) and (34), the upper bound

on P(,(k) that is obtained is shown by a dashed line on Fig. 5. This is compared to the
numerical solution of Eq. (6) that is obtained in the following section. The bound for
p6(«) for values of k not close to k = 0 is quite high because the approximation function
</>„ in Eq. (33) does not satisfy the condition that the solution must satisfy: <j>u = 0 at
y = yh . Furthermore, this <£„ is independent of k, and in regard to this point, it can be
observed with the aid of Fig. 4 that, for p ^ pb , the solution <j> is bounded as

[~<t>(y;p, «)] < PA for y„ £ y ^ 1. (35)
A better approximation to PbU) is obtained by choosing a trial function for </> which

does vanish properly at both y = 1 and y — yb . At y = yb , which is the saddle point
y2 , it is known that the characteristic that enters this point is tangent there to the
separatrix. The tangent lines to the separatrix at y2 have the following equations on the
phase plane:

x2 = \22(x1 - y2) and x2 = \l2{xx - y2) (36)

where the \j2 are given by Eq. (14) above. Hence, it follows that, for small positive
values of y — yb ,

4>(y; p, k) = \22(,y - yb). (37)

Equation (37) can also be obtained from Eq. (26):

d± = /(?/, <i>) __ 2 _ y3 - y + v
dy 4> KJ <t>

In taking the limit as y —> yb , the last expression on the right is evaluated by L'Hos-
pital's rule, leading to a quadratic equation for the limit value.of d<j>/dy (cf. Eq. 16A
below). Therefore, the trial function should have the following limiting properties:

" -<2p)'" (m)

= (38b)
v~*v f, V Ulj

The following trial function
-0 = (2p)I/2(l - yb)'\l - y)v\u - 2h)

- [(2p),/a(l - yby3/2 + (1 - ybyl\M](l - y){y - yb) (39)
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does satisfy Eqs. (38a, b) as well as Eq. (22). It cannot be proven to be an upper bound 0U,
but it is quite close to being one. If the right-hand side is substituted for — 4>u in Eq. (31),
the following cubic equation is derived for k*:

2BCk*3 + (B2 - C2D - 2ACT)**2 - 2ABk* + A2 = 0 (40)
where

A = i(l ~ y>,)(3yb - 1),
B = twci[2?/(,(1 + yb)]W2(17yb + 44 yb + 65),

C = Th>y2(3yl + 4:yb + 3),
and

D = 4 (1 - 3yl).
2/b

Equations (29) and (40) are again parametric equations for pb and k* with yb as a
parameter. This approximate solution of pb plotted against k is shown in Fig. 5 by a
dotted line, and it is seen to lie close to the exact solution and always above it.

This same procedure can be used to derive lower bound approximations to p,,(k)
by using suitable functions — <fiL which are known to be less than [—<t>{y, p, «)]. In this
regard, it has been shown here that [—4>{y\ p", «)] for p" < p and [—<j)(y; p, «')] for
k' > k are both functions of the class [—4>L],

6. Direct method for k > 0. In order to find the exact values of the critical load,
Eqs. (6) and (7) are solved numerically by use of the Runge-Kutta-Gill technique [8].
By comparing the numerical solution of pb with the known solution of the case k = 0,
we find that this method can provide good accuracy for our purpose.

The deflection history curves are shown in Fig. 6 for k = 0.5. The structure oscillates
with decreasing amplitudes due to energy dissipatio n through the dashpot. For p < ph,
the oscillation dies out and approaches a limiting frame height ^asT^ . As the load
increases, the truss vibrates with decreasing frequency. At p = pb , the height of the
truss approaches a limiting value y2 asymptotically without vibration. For p > pb ,
the truss first deforms to a snapped position and then vibrates with decreasing
amplitudes.

.-BOUND
' EQS (29) '/O-S0LUTI0NI «...<««

aEM '

Fig. 5. Dynamic Buckling Load pb vs. Viscosity Factor k.
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hy-r"o -0.5 -

Fig. 6. Deflection Histories for k = 0.5, (pt = 0.334).

For most values at k, if p > pb , the position of the truss will approach y3 as r —» °°.
However, when the value of k is very small (k < 0.01385), there are some ranges of k
within which the truss will approach y = y\ as r —* <». This behavior can easily be
visualized from the potential curves (Fig. 3). During the oscillation of the truss, the
value of the potential energy changes with y along the curves shown in Fig. 3. For
sufficiently small values of k, the potential energy can pass over the local maximum at
y = y2 back and forth several times, and then finally approaches the local minimum of
either y1 or y3 depending on the total dissipated energy D during the oscillation. The
narrow regions in p — k diagram for are shown in Fig. 7 and Table 1. When
p > 0.385, the local maximum of the potential curve disappears; hence, the truss al-
ways stops at a height y3. From Fig. 7, we conclude that for either k = 0 or k > 0.01385
the two definitions of dynamic buckling given in Sec. 2 are actually equivalent; other-
wise, they need not be equivalent.

Note that the nondimensional height at infinite time depends only on the load
parameter p but not on the viscosity factor k on account of the delayed elastic charac-
teristic of Voigt solids. In the problem considered in this paper, it is possible to define
the dynamic buckling load according to the definitions of Sec. 2. On the other hand,
these definitions of dynamic buckling cannot be applied to all viscoelastic structures.
For example, the structure made of the Maxwell solids can flow indefinitely, and it
always deforms to a snapped-through position at large time.

The nondimensional dynamic buckling load pb is plotted against the viscosity factor
k in Fig. 5. It is found that the viscoelastic buckling load is higher than the elastic
buckling load. In Theorem 2A, Appendix A, we have proved that the value of yv for the

Fig. 7. Regions for y( o°) = y\ in p — k Diagram.
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Table 1. Upper and Lower Limits of Regions of Fig. 7.

K X 103

TO = 1

upper lower

to = 2

upper lower

m — 3

upper lower

0.31 2.832 2.747 1.284 1.265 0.774 0.766

0.33 6.696 6.572 3.203 3.174 2.048 2.035

0.35 9.908 9.813 4.804 4.782 3.110 3.101

0.37 12.510 12.475 6.101 6.094 3.973 3.969
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Fig. 8. Nondimensional Time tj, to Reach the Buckling Height.

viscoelastic case is higher than that of the corresponding elastic case as a result of energy
dissipation during deformation. Thus, the possibility of buckling in the viscoelastic
case is reduced. As already mentioned in Sec. 2, when the value of k is very large, the
motion of the structure becomes extremely slow and the dynamic buckling load ap-
proaches the quasi-static value p, = 0.385.

The nondimensional critical time rb for p > pb can be defined as the smallest time
required to reach the height y2 . This critical time is shown in Fig. 8 for various values
of p and k. At p = pb , the critical time is infinite; as p/pb becomes large, the critical
time approaches zero.

7. Conclusions. The principal conclusions are the following:
(1) The physical meaning of dynamic buckling is that the maximum amplitude of

the motion in time, when considered as a function of the applied load, ine'^ascr ;i a
discontinuous fashion at a particular load, the dynamic buckling load. For la-gcr io K
the structure thus will during its motion deform to a snapped-through pcsit^n at least
temporarily. The saddle point criterion for dynamic buckling (Definition 2) *iown to
predict the unique value of the buckling load in all cases. For small value •> .be vis-
cosity factor, however, an alternate criterion, which looks only at asymptoti. behavior
in time (Definition 1), will predict no buckling at certain larger loads. At these loads,
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snap-through will have occurred in the motion only during finite time, while the struc-
ture tends towards an unbuckled equilibrium position for large time. Although it is not
the case for the considered structural model, other structures could exhibit such a
phenomenon for a continuous range at loads above the dynamic buckling load. It is
considered, therefore, that dynamic buckling criteria based upon the asymptotic charac-
ter of the motion is not satisfactory for dissipative structures.

(2) For a Voigt material, the dynamic buckling load has been shown to lie between
the dynamic buckling load for the elastic material as the lower limit and the quasi-
static buckling load as the upper limit. The quasi-static buckling load is found from the
viscoelastic theory to be equal to the dynamic buckling load in the limit of infinite
viscosity.

(3) The energy integral method for prediction of dynamic buckling loads, which has
been very useful for elastic structures, is extended to the present viscoelastic structure.
The extended method is shown to be useful for computation of bounds on the dynamic
buckling load for the viscoelastic case with the use of trial functions that bound or ap-
proximate solutions to the differential equations.
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Appendix A
Theorems on <j>(y, p, k). With regard to the family of curves = y, x2 = 4>(y; p, k)

in the Xj , x2 phase plane, as described in Sec. 4 above, the following theorem is proven.

Theorem 1A. Two curves of the family <j>(y; p, k) for distinct values of p or distinct
values of k do not intersect one another for 4> < 0.

Equation (22) shows that for (1 — y) nonnegative but sufficiently small, <f> is ap-
proximately given by

= [2p(l - y)]1/2. (1A)

Therefore, if p' > p, the curve <f>(y; p', k) lies below the curve 4>{y) p, k) for y near 1.
If substitution is made from Eq. (1A) into Eq. (20), the following expression is also
obtained for small, negative values of (1 — y):
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= 2p(l - y) - j(2p)1/2(l - y)3'\ (2A)

If k' > k, it is seen from Eq. (2A) that the curve p, k') lies above the curve <j>(y; p, k)
for y near 1.

Let it now be assumed that these curves have a first intersection for some Xi — x\ ,
x2 = x*2 with x*t < 1 and x*2 < 0. If 6V. and 9P are tangent slope angles corresponding to
p' and p, respectively, for the same value of k, Eqs. (23) and (25) show that

tan 9V. — tan dp = — (p' — p)/x* . (3A)

If p' > p, then tan > tan 6P . If we take the —xt direction as 0 = 0, then for x2 < 0,
— tt/2 < 0 < 7r/2. Hence, > 6V , as is shown on Fig. 1A. However, this condition
implies that the curve p', k) lies above the curve <p(y, p, k) to the immediate right of
the point x^ , x% , as is illustrated in the figure. This violates the assumption that x* ,
x*2 is the first intersection. Hence, these curves cannot intersect.

Similarly, if 0, and 0,. are tangent slope angles corresponding to k and n' respectively,
for the same value of p, Eqs. (23) and (25) show that

tan 0— tan 0K = x*2x*{k' — k). (4A)

<£(y; p. ")

Fig. 1A. Orientation of Curves p, k) at a Supposed First Intersection.
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Thus if k' > k, < 0, , as is shown on Fig. lAb. However, this condition implies that
the curve p, «') lies below the curve <£(?/; p, k) to the immediate right of the point
x\ , x\ , as is illustrated in the figure, and this is again a contradiction.

Corollary. For all p', p, k' and k such that p' > p > 0 and k' > k ^ 0, and for all y
such that <f> < 0, the following inequalities hold:

> —<t>(y,p,K),

v>«') < v. «)• (5A)
The following theorem concerns the behavior of the characteristics at their inter-

section with the line x2 = 0, the case that was excluded from the preceding theorem and
corollary.

Theorem 2A. For 0 < p < pb and k 0, yv is monotonically decreasing with in-
creasing p for fixed k and monotonically increasing with increasing k
for fixed p.

Several preliminary developments are needed before this theorem is proven. First,
the following substitutions

v = y - yv,

£ = y' - Vv, (6A)

Hv) = 4>(y) for y = y + yv
are made in Eq. (20), which then can be written as

p(l — yv — v) — l^2 + |[(l — yP — i)2(l + yP + jy)2]

+ « [ y'X~<t>) dy' - [ y'2(-<t>) dy'
• tj Tt * VV

(7A)

The second term on the right-hand side of Eq. (7A) can be expanded in powers of ??:

H(i -y,- v)\l + y. + T7)2] = 1(1 - ylf
- y,{l - ylh - 1(1 - Wv + yJ + W- (8A)

In view of this, and of Eq. (21), Eq. (7A) becomes

—pi) = |$2(t7) — y„( 1 - yl)v — 1(1 - 3yl)v2

+ V*n + W ~ K r [yl + 2to, + dt (9A)
Jo

A solution to Eq. (9A) is sought with the formal representation of 3>(r;) by a power
series in the variable rj1/2 for y 2: 0:

-*(u) = S AnVn/\ (10A)
n«= 1,2, •••

where the An are constants depending upon p, k and yv . If A„ is defined to be zero for
n — 0,-1, —2, • • • , then

= Z(Z AiA,)i)nn. (11 A)
n=*2 » + ;=«
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Upon substitution from Eqs. (10A) and (11 A) into Eq. (9A), there is obtained the
equation

-PV = I £ ( £ A,.)V/2 - yP( 1 - ylh - 1(1 - 3ylW + yPy3 + V4
^ n = 2 t + j-n

* £ T](k/2> + 1(ylA.t + 2yrAk-2 +L2 + fc (12A)

Equation (12A) can hold for some positive range in ij only if the coefficient of each power
of 7)1/2 vanishes. The lowest order terms are of order rj:

~PV = Mil - 2/p(l — yl)v
which then yields

-4i = 2fop(l - j£) - p]. (13A)
It follows from the discussion of Eq. (lib) that if y2 ^ yv ^ Vi , then A\ is positive in
the open interval for yv and approaches zero as yp approaches y2 .

The terms of next higher order are of order ij3/2:

i(2AM'2 - K-ly\Arfn = 0. (14A)
If At 5^ 0, then

A2 = hyl . (15A)
If Ai = 0, however, then A2 is not determined by Eq. (14A) but by the terms of order r

WA,AZ + AlW - 1(1 - Wv - K-hylArf = 0.
For Ai = 0, A2 obeys the equation

Al - Ky\A2 - (1 - 3y\) = 0. (16A)
If yP ~ V2 i there are two real-valued roots A2 = — X12 and A2 = — X22 that are given by
Eq. (14); these represent the directions of the separatrices at the saddle point.

It is straightforward now to prove Theorem (2A) with the use of Eqs. (13A) and
(15A), by means of which we can write, upon substitution of Eqs. (13A) and (15A) into
Eqs. (10A) and (6A):

-<t>(y,p,«) = 2u\yp - y\- v)u\y - yv)1'2 + hvliy - yP) (17A)

for 0 < y — yp « 1. Assume first that p' > p. Since it follows directly from Corollary
1A that yP' cannot exceed yv , it remains only to show that yv- ^ yp . If equality were
the case, however, Eq. (17A) gives

[-<Ky;p', «)] - [-4>(y;p,«)] = 2u\y - yp)u\(yp - y\ - p'fn ~ (y, ~ y\ - p)U2]

< 0
if y ^ J- and yv ^ yt . But this contradicts the first inequality (5A). Similarly, it is
again a direct consequence of Corollary 1A that yv for / cannot be less than yv for k if
k' > k. If k and k produce the same value of yv, then Eq. (17a) shows that

[~4>(y, p, «')] - [~4>(y; p,«)] = \y\(y - j/»)(*' - *) > o
which contradicts the second inequality (5A).


