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Summary. The analogy between potential theory and classical elasticity suggests
an extension of the powerful method of integral equations to the boundary value problems
of elasticity. A vector boundary formula relating the boundary values of displacement
and traction for the general equilibrated stress state is derived. The vector formula
itself is shown to generate integral equations for the solution of the traction, displacement,
and mixed boundary value problems of plane elasticity. However, an outstanding
conceptual advantage of the formulation is that it is not restricted to two dimensions.
This distinguishes it from the methods of Muskhelishvili and most other familiar integral
equation methods. The presented approach is a real variable one and is applicable,
without inherent restriction, to multiply connected domains. More precisely, no difficulty
of the order of determining a mapping function is present and unwanted Volterra
type dislocation solutions are eliminated a priori. An indication of techniques necessary
to effect numerical solution of the resulting integral equations is presented with numerical
data from a set of test problems.

1. Introduction. The strong analogy between potential theory and classical elastic-
ity theory has been exploited most notably by Betti [1], Somigliana [2], Lauricella [3],
and other geometers of the Italian school. In particular, Betti’s gener:l method of
integrating the equations of elasticity may be regarded as a direct exte. <ion of the
potential theoretic methods of Green and Poisson. IFurther, the powerfu! theory of
singular integral equations has been extended by Fredholm [4] and Lauricella [3] to
attack elasticity problems. This latter approach circumvents, somewhat, the inherent
difficulty with Betti’s method, that of constructing the tensor counterpart of a Green’s
function. More recently Sherman [5], Mikhlin [6], and Muskhelishvili [7] have used
singular integral cquations in treating plane elasticity problems via the elegant complex
function approach.

Rather effective treatment can be given, however, to two-dimensional elasticity
problems by real variable methods using integral equations. This is indicated in the
paper by Jaswon [8]. His approach is free from the necessity of finding influence func-
tions and mapping functions for the regions in question, often a formidable task even
for simply connected domains. On the other hand, it inherently applies only to two di-
mensions, and works with a stress function instead of directly with the assigned bound-
ary quantitics. A real variable formulation of problems in terms of the assigned bound-
ary values ouly is possible, fortunately, and is the type of formulation presented in
this paper.

The presented appreach depends on the knowledge of the singular solution to the
Navier-Cauchy elasticity equations in two dimensions which corresponds to a con-
centrated force. This singular solution gives rise to a vector identity similar to Green’s
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third identity for Laplace’s equation. Taking the field point to lie on the boundary
contour, a boundary formula is obtained which is a relation between boundary dis-
placements and corresponding boundary tractions. Since either of these boundary
quantities, in principle, determines the other, the formula provides a constraint be-
tween them, which, as shown apparently for the first time in this paper, generates a set
of simultaneous integral equations from suitable boundary data. These are of different
types according as data appropriate to the first, second, or mixed boundary value
problems are prescribed. The unknowns in the equations are boundary tractions or
displacements directly. Once these are obtained, the displacement field is generated
by means of the vector identity. It may be remarked that analogous, though simpler,
types of integral equations generated by Green’s third identity on the boundary (Green’s
boundary formula), have been successfully solved numerically by Jaswon and Ponter [9]
and by Symm [10].

Problems for multiply connected regions may be considered without fundamental
restriction. No mapping function need be found and tractions on each boundary need
not, separately be equilibrated. Also, Volterra dislocation solutions are inherently elimi-
nated from the formulation at the outset. This then is a unified direct approach to all
three fundamental boundary value problems of elasticity. The solution to each is gener-
ated with one and the same formulation from a knowledge of boundary data alone
offering generality, practicality, convenience, and economy of effort.

This paper deals entirely with two-dimensional problems and includes numerical
data from a trial set of problems to lend confidence to the method. Data from an ex-
tensive set of problems representing a more complete exploration and test of the method
will be discussed in subsequent papers. An outstanding conceptual advantage of the
boundary formula approach is that it applies to three dimensions as well as two with
similarly defined integral equations arising in eac™ case. The three-dimensional counter-
part of the presented approach and several conver.ient auxiliary function formulations
including one emanating from the Papkovich-Neuber decomposition are currently under
investigation.

2. Integral equation formulation. The Navier-Cauchy equations of elasticity in the
absence of body forces take the form

N+ wo, + #V2u-' =0, ¢ =u;, (2-1)l

and embrace the problems of plane strain and generalized plane stress if all variable
quantities are considered functions of planar Cartesian coordinates z; . In Eq. (2.1) u;
is the displacement vector, ¢ the dilatation, and the remaining symbols have their
usual significance.

Let the body under consideration first be finite and bounded by a single smooth
contour C' which, as described by Muskhelishvili [7], admits a representation in the
form z; = z;(s). The first derivatives z/(s), are continuous and never simnultaneously
zero. The parameter s is arc length along the contour from some arbitrary origin on it.
The region vccupied by the body is traversed in the positive sense keeping the region
on the left. The positive tangent at a boundary point @ agrees in sense with that of

1The usual indicial notation of Cartesian tensor analysis is used. Latin subscripts have the range
(1, 2) and summation over repeated subscripts is implied. Subscripts preceded by a comuna indicate
differentiation with respect to the corresponding Cartesian coordinate. Kronecker’s delta and the
alternating symbol are denoted by &;; and e;;i, respectively.
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positive traverse and the positive unit normal n; at @ points away from the region.
The interior open region of the plane thus defined is labeled ¢ and the exterior open
region o’. Points of ¢ are designated p, points of ¢’ are designated p’. Points of C are
designated P or Q.

For the body (¢ + C) in equilibrium under the action of boundary tractions ¢, the
relation

P[u,] = t.' = )\0”, “I“ ﬂn,'(u,'.,' "I" ui’.') (2.2)

must hold on C in which T is the indicated operator.
Let z; and §; be two points of ¢ and define

r=[& = &)+ @ — &7
Further, let U,; be the tensor field defined by
U;; = 8;; logr + Mr ;.
The displacement vectors u} defined by
u; = Ue;
in which e; are unit base vectors both satisfy Egs. (2.1) in ¢ provided
r#0, M= —é\)‘—_l_-i_—?:;)y

These displacement vectors arise from concentrated forces of magnitude —4ru(A+2u)/
(A 4 3p) acting at the point p = £, in the z, directions respectively. These singularities
are termed nuclei of strain by Love [11].

The traction vectors ¢/ on C corresponding to u! are computed from 1 7. (2.2) and
may be written

t; = T,','e;

in which
Tij = o= log rlkdy; — 4ubr.ir.;) + K{(log).in; — (log).jn.].
Q

In the above expression for the tensor field T';; , the derivatives are with respect to the
coordinates z, at Q and r = »(p, Q). Also, k has the value 2u°/(\ + 3u).
The vectorial form of Betti’s reciprocal work theorem can be written

f W.T;; — t,U:) dQ = 0 (2.3)
C+m

where d@ is an element of arc length at @ and in which the point p = ¢, of ¢ has been
excluded by a small cirele m of radius § because of the singular nature of U;; and T;
for r = 0. The vectors and their derivatives are assumed nonsingular and sufficiently
continuous for usual validity ¢f the theorem. These vectors correspond to an equilibrated
stress state and body forces associated with U;; , T';; are taken as zcro with no loss in
generality. Now it is casy to show that

Hmfh&JQ=Q lmfwﬂJQ=—{%@ 2.4)

440 6—0 Ym
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in which @« = (A + 3u)/4mu(N 4+ 2p). Equation (2.3) yields, therefore, the expression

wp) = a f [ (@QT.(p, Q) — L@QU.p, Q)] dQ 2.5)

which is the plane counterpart of Somigliana’s integral (cf. Love [11, p. 245]).

If the region occupied by the body is (¢/ + C), some attention to detail must be
given in using Betti’s theorem. If the tractions are equilibrated on C,* and u,(p’) = o(1)
as p’ — o uniformly, Betti’s theorem is valid as used above and Eq. (2.5) holds for p
replaced by p’.

Equation (2.5) is a relation among a vector u,(p) which satisfies Eq. (2.1), its bound-
ary values u;(Q), and its corresponding boundary tractions ¢,(Q). This relation is the
analogue of Green’s third identity of potential theory which expresses a harmonic
function in terms of the boundary values of the function and its normal derivative.

The integrals present in Eq. (2.5), i.e.,

$:(p) = f LQULm, Q) dQ, () = [ w(@T.(p, Q) dQ

are likened to the single and double layer scalar integrals of potential theory. The prop-
erties of the integrals as the boundary C is crossed are desired. If

lim ¢.(p) = ¢«(P), lim ¢.(p) = ¢.(P)
then letting p — P in the second of these integrals yiclds
W(P) =k — M (P) + [ w@T(P, @) dQ.

This result is readily verified provided u; is assumed to satisfy a Hoélder condition on C
and provided the singular integral is understood in the sense of a Cauchy Principal
Value.? A similar but simpler limiting procedure for the single layer type integral gives

:(P) = [ L@QU.P, Q) dQ.

Since
u;(P) = a[¢:(P) — ¢:(P)]
and since
ar(k — 2ubdl) = 1/2
there results

K] = u;(P) + 2a fc L@QUP, Q) — u(@T(P,Q]dQ =0 (2.6)

in which the vperator K will be regular according to the classification of singular oyp.era-
tors by Muskhelishvili [12] for all admissible values of Poisson’s ratio. The expression
(2.6) is the theory of elasticity analogue of Green’s boundary formula.

For exterior or interior multiply connected regions, the meaning of C is clear after suvitable cuts are
introduced in the standard fashion to render such regions simply connected.
3Details surrounding the principal value notion and a statement of the Hélder condition can be

found in Muskhelishvili [12].
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Given ¢; on C (traction problem) the two components of Eq. (2.6) form a pair of
integral equations for the unknowns u; on C. As might be expected, the rigid body
displacement vector

u;(P) = a; + be.;t:(P)

satisfies the homogeneous form of these equations, i.e.,
w,(P) — 2 fc w(QT. (P, Q) dQ = 0 @.7)
where a; and b are arbitrary constants. Application of the Fredholm alternative yields
[ t@aa = [ enn@u@de = o 2.8)

as the necessary and sufficient conditions for the solubility of Eq. (2.6). These are, of
course, the conditions that the body be in equilibrium.

It should be noted that although the Fredholm alternative was employed above,
Iigs. (2.6) are not Fredholm integral equations. The presence of the term

T¥ = kl(logr),im; — (logr) n.]
in the kernel function T';; is responsible for this. More precisely
lim |Q — P|T¥(P,Q) =0
QP

whereas a limit of zero is required for Fredholm kernels. Nevertheless, the index «
(cf. Muskhelishvili [12, Chap. 19]) computed from 7% is zero and the Fredholm alter-
native is applicable.

To effect a numerical solution of the traction problem the rigid body ‘ortion of the
solution must be eliminated. The manner of accomplishing this is consi .cred in the
subsequent discussion on numerical procedures.

Given u; on C (displacement problem) the two components of Eq. (2.6) are a pair of
integral cquations in the unknowns ¢; on C. It is expected that these equations have a
unique solution ¢, on € for arbitrary u; on C. This is equivalent to the fact that the
homogeneous equations

[C LQU.LP, Q) dQ =0

have no nonzero solutions. This may be proven as follows. Let

wi(p) = f MNQU ., Q) dQ, f Q) dQ = 0

be a displacement field defined in o. The field w%(p’) is also defined in ¢’ and vanishes
uniformly as p’ — «. Further, let
lim t%(p) = t*(P)*,  lim t*(p’) = t*(P)”
[ i P'—P
in which
4P)" = NP+ [ TQULP, Q) de,
¢ 2.9)

I

()"

—knP) + [ TQU.LP, @) dQ
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where k, is a nonzero constant and I' is the vector operator defined by Eq. (2.2). Since
u* is continuous across C, if u%(P) = 0 the field u% = 0 in the entire plane. Thus

th(P)* = t5(P)” =0
and subtracting the second of Eqgs. (2.9) from the first yields
N(@P) = 0.

This completes the proof.

With knowledge of u; = u} on part of C and ¢; = ] on the remaining part (mixed
problem), a set of four equations in the unknowns u} and ¢} on C is obtained. For this
and the two previous boundary value problems the displacement field is generated by
means of Eq. (2.5).

Should the region occupied by the body be multiply connected, the methods pre-
sented above may be extended without inherent difficulty. Indeed, if boundary data
are given on all contours, and the integral in Eq. (2.5) is taken over each of the contours
in the proper sense (see footnote 2), Eq. (2.5) yields a single-valued displacement vector
in any multiply-connected domain. Also, if the integral in the boundary relation (2.6)
is taken over the contours in a similar fashion, the reduction to integral equations of
the mentioned types follows immediately.

3. Numerical techniques. Methods of approximating the integral equations which
arise in this paper reflect the work by Symm [10] but modifications and additions are
included. The singular kernels which arise in Egs. (2.6) are more complicated than
Symm’s kernels and particular attention must be given singular kernels whose integrals
exist only in the sense of a Principal Value.

Assume first that the displacement problem is to be solved. The contour C is divided
into n intervals and a set of n nodal points are . ~cted on C. The uth nodal point Q,
is located at the center of the uth interval. For purp..ses of integrating over each interval
assume the unknown tractions ¢; (@) remain constant over each interval. Equations (2.6)
are then replaced by the linear algcbraic system

3 1.(Q.) f Ua®, ,QdQ =0,(P) (1 =1,2, - n) @3.1)

u=1
in which ©;(P,) are known functions involving the assigned boundary displacements.
The end points of the indicated uth interval of integration lie midway between Q,-,
and @Q,., and these end points are denoted by @,-./. and @,.,,, respectively.
The solutions ¢;, of the system (3.1) give rise to a displacement field

W@ = —a 3 10 [V @ a - @:@)] 3.2)

— pe=1

n which

0/p) = [ w@T., @ dQ

is known.

To evaluate the coefficients of ¢;, in Egs. (3.1), note that Point P, will « nc'de with
one of the points @, once in each cquation of the system (3.1). For the rem. i..ing possi-
bilities the integrals in (3.1) are well defined and a Simpson approximatic:. is used.
When P, = @Q,, i.c., P, within the interval of integration, the expression
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L log r d@ = r@, , Qur)log (@, , Quersa) — 1]
+ r(Qu ) Qu+1/2)[10g T(Qn ’ Qu+1/2) - 1]

is found by direct integration assuming ds = dr for the appropriate term in Eqs. (3.1).
For the remaining integrals in Eqgs. (3.1) it is helpful to note that

r, = cos 0, r, =8in @

where 6 is the angle between r(P, Q) and the z, axis. Although 6 is not well defined when
= 0, the integrals
/ T, dQ
n

do exist. But because of this character for r = 0, a trapezoidal approximation over the
interval @,_1/2 , @u+1,2 is used for such integrals when P, = @, .
To solve the traction problem Egs. (2.6) are replaced by the system

wP) = 2 X un(@) f TP, , Q) dQ = (P (3.3)
=
in which @,;(P,) are known functions involving the assigned boundary tractions. To
ensure a unique solution to the system (3.3) it is necessary to specify the rigid body-
motion. This can be accomplished by suitably prescribing three displacements com-
ponents of three convenient boundary points as is specifically demonstrated in the next
section. Three equations are then eliminated. The solutions u,, of this reduced system
give rise to a displacement field

u(p) = a[zn:uuf"Tu(p, Q) dQ — 9?(1))] (3.4

»=1

in which
%) = [ LQU.p, Q dQ

is known.

Regarding the cocfficients of u,, in Eqgs. (3.3); note that since (9/dnq) log r dQ = db,
and since r,; have the interpretations cos 6, sin 6, integrations may be carried out exactly
for P, outside the interval of integration. For P, within the interval of integration, the
integrals

Buis = f Q. , Q) dQ,

in which 7%, = T,; — T , are morc conveniently evaluated by the equivalent cal-
culation

B = [ 1o, 00 - [ 10, 0 a0 3.5)

Using the known relations

T
[—bf*rdQ:n, /;r_, ¥ n Q]()WrdQ é
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in which r = r(P, Q), the first integral of (3.5) is easily found (cf. MacMillan {13]).
The second integration can be performed directly. The only remaining integrals which
require attention, i.e.,

8L = f %@, , Q) dQ

have the common value zero when evaluated in the required sense of the Principal
Value.

For the mixed boundary value problem, the displacements u;, = u} on part C, of C
and the tractions ¢, = ¢ on the remaining part are known. The curves C, and C, are
divided into n, and n, intervals, respectively. Equations (2.6) are then replaced by the
system

we) + 2] 5300 [ ap,, @ de~ Eut@) [ 1., @ ae]

in which Q!(P,) and ©3(P,) are known functions of the prescribed displacements and
tractions on C, and C, , respectively. Once these equations are solved for the quantities
u? on C, and ¢} on C, , the displacement field u,;(p) is obtained from Eq. (2.5) in which,
of course, the integrations are performed in the manner of Eq. (3.2) and Eq. (3.4).

All numerical operations are well suited for computation by a digital computer
working upon the input data

Qu = xiu ) Quil/2 = xt’yil/ﬁ .

The functions ©,(P,) and Q,(P,) may be entered as data or computed separately by the
machine. A single program may be written which »rms and solves the necessary equa-
tions and then generates the desired displacement 1. 1ds.

4. Numerical data. The numerical solutions to a number of elementary boundary
value problems are obtained as a check on the validity of the approximations outlined
in Sec. 3. Computed data are thus compared with easily obtained analytical solutions.
The domains considered are the circle, the circular ring, the ellipse, and the rectangle.
The rectangular domain is regarded as a problem in plane stress; all others in plane
strain. For gencrality and ease in programming, all functions ®; and Q; are computed
by the machine assuming known tractions and displacements constant over the uth
interval. Also, no advantage of obvious symmetry is taken in programming. All quanti-
ties associated with each nodal point are calculated individually.

Tor each domain a right-handed coordinate system z; is used; the origin of coordinates
is coincident with the centroid of the domain and the coordinate axes for the ellipse
and rectangle coincide with the major and minor axes for these shapes.

A traction problem for the circular domain is considered first. Twelve ncdal points
on the bouudary are located and numbered for identification as the hour positions on
the clock. Node three is thus on the z, axis. A tensile traction N = P, sin” ¢ is applied
to the boundary; P, is constant and ¢ is the angle of a radius of the circle with the posi-
tive z, axis. The rigid body motion is effectively reduced to zero and th: :.sociated
boundary displacement components are calculated. Next, as a first check ov 'te results,
a tensile traction N = P, cos’® ¢ is applied and the net boundary displace: went com-
ponents are compared with those expected from the stress N = P, acting alone. A
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second run on this problem is obtained with twenty-four nodal points by adding a node
midway between each of the original twelve. Again node one is in the same position and
the remaining nodes are numbered in sequence according to a clockwise traverse. An
improvement in the accuracy of calculated data is observed as expected. The expected
symmetry in boundary data is obtained, hence, data for the first quadrant only are
given in Table I.

To specify the rigid body motion for these and subsequent traction problems, the
u, components of displacement for both nodal points on the z, axis and the u, com-
ponent for the point on the z, axis are taken as zero. Since u,, at the nodes really repre-
sent displacement components of all material points on the associated boundary inter-
vals, this amounts, in principle, to an overspecification of boundary data. But because
of the character of the actual relative displacement over the intervals involved and the
relatively small arc lengths even for twelve segments, serious error is not introduced.

A displacement problem for the circular ring is considered by assuming the inner
boundary fixed and the outer boundary rotated a constant amount ¢, clockwise. The
nodal pattern for the inner boundary is exactly that for the solid circle for twelve nodes.
Twelve more nodes are located on the outer boundary occupying the half-hour positions
on the clock. To continue the numbering, node thirteen occupies the half-past twelve
position. The remaining are numbered in sequence clockwise giving a total of twenty-
four. The tractions ! and ¢ on the inner and outer boundaries respectively, correspond-
ing to the given boundary displacement, are calculated and compared with the expected
analytical values. Next, to pose a mixed problem, {; is applied keeping the inner bound-

TasLe 1. Boundary data for circular domain, traction N = P, sin* ¢
Radius p = 10% in., Poisson’s ratio v = .25
Young’s Modulus E = 107 p.s.i., Py = 1600 p.s.z.
Boundary ui, (in.), n = 12

Numerical Analytical
Node Ul Uz, Uty Uzy
12 0 1.2690 0 1.3333
1 0.2531 0.8689 0.3333 0.8660
2 —0.0219 0.2360 0.0001 0.1667
3 —0.2910 0 —0.3333 0
Boundary ui, (in.), n = 24
Numerical Analytical
Node Uiy Uz, Uiy Uy
23 0 1.2984 0 1.3333
24 0.2075 1.1769 0.2357 1.2016
1 0.2916 0.8660 0.3333 0.8660
2 0.2013 0.4960 0.2357 0.4714
3 —-0.0120 0.2015 0.0001 0.1667
4 —0.2244 0.0477 —0.2357 0.0231
5 —-0.3123 0 —0.3333 0
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ary fixed. Values ¢} and u? on the inner and outer circles are then calculated. Boundary
data for the first quadrant are given in Table II.

The boundary of the ellipse is divided into twenty-four equal segments. Node one is
on the positive z, axis and the remaining nodes are numbered in sequence according to a
clockwise traverse. The coordinates of the nodal points for equal spacing are entered as
data from computations by a special subroutine which uses the equation of the ellipse.
A uniform tensile traction N = P, is applied normal to the boundary and the correspond-
ing boundary displacement components are calculated. First quadrant boundary data
are given in Table III.

The boundary of the rectangle is divided into twenty-eight segments by dividing the
long and short sides into nine and five segments, respectively. Nodal points coincident
with corners where the contour has no unique tangent are thus avoided. Node one is
on the positive z;, axis again and the remaining nodes are numbered as for the ellipse.

TasLE II. Boundary data for circular ring
Radii: py = 104 in., p2 = 2 X 10* in.; Poisson’s ratiov = .25
Young’s Modulus E = 10" p.s.t.
Displacement prob., ¢y = 6 X 1078 radian
Tractions t;, (p.s.i.)
Numerical Analytical
Node tiy tay, by to,
12 —543.2 0 —532.0 0
1 —470.4 271.6 —461.5 266.0
2 —271.6 470.4 —266.0 461.5
3 0 543.2 0 532.0
13 140.4 —37.6 128.7 —34.5
14 102.7 —-102.7 94.3 —94.3
15 37.6 —140.4 34.5 —128.7
Mized probd., uniform shear 632 p.s.i. on C.
Tractions t;, (p.s.i.)
Numerical Analytical
Node b 179 by oy
12 —497.2 0 —532.0 0
1 —430.6 248.6 —461.5 266.0
2 —248.6 430.6 —266.0 461.5
3 0 497.2 0 532.0
Displacements u;, (in.)
Uy Uzy Uy U2y
13 0.8841 —0.2369 0.9659 —0.2588
14 0.6472 —0.6472 0.7071 —0.7071
15 0.2369 —0.8841 0.2588 —0.9659
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TasLe II1. Boundary data for ellipse, Py = 104 p.s.i.
Semiazes: a = 200 in., b = 100 in.;
Poisson’s ratio v = .20,
Young’s Modulus E = 10% p.s.i.
Boundary uiy, (in.)

Numerical Analytical
Node Uiy, Uy Uty Uszy
19 0 0.3541 0 0.3600
20 0.1434 0.3484 0.1454 0.3526
21 0.2849 0.3232 0.2887 0.3298
22 0.4226 0.2824 0.4277 0.2896
23 0.5507 0.2203 0.5587 0.2271
24 0.6554 0.1280 0.6689 0.1332
1 0.7008 0 0.7200 0

A simple traction problem for this domain is posed by loading the two short sides with a
uniform normal tensile traction ¢, . Tractions everywhere else are zero. Although this
problem is most elementary, the character of the boundary and discontinuity of the
prescribed traction are features not previously encountered. Boundary displacement
components are calculated and data for the first quadrant are given in Table IV,

As a check on field quantities, displacement components at points along several
radii of the circular domain with boundary traction N = P, sin® ¢ were calculated.
Agreement with analytically computed field values is comparable or better than that
obtained for the given boundary quantities. Also, a check on the stresses at the same
points using a simple finite difference procedure was obtained with rati~r surprising
accuracy considering there are two levels of approximation involved to ol:..in stresses
in this manner. However, the finite difference procedure need not be used since once the
boundary quantitics are determined, Eq. (2.5) can be differentiated directly to yield an
expression for the stresses. Thus, one level of approximation is eliminated. Since all such
differentiations are with respect to the field point p, only the kernel functions are effected.

Tasre IV. Boundary data for rectangular domain, t; = 104 p.s.z.
Dimensions: 360 in. X 200 in.;
Poisson’s ratio v = .20, Young’s Modulus E = 10® p.s.i.
Boundary us, (in.)

Numerical Analytical

Node Uiy Usy Uiy U2y
22 0 --0.2208 0 —0.2000
23 0.3991 -0.2213 0.4000 —0.2000
21 0.7976 —0.2227 0.8000 —0.2000
25 1.1941 —0.2249 1.2000 —0.2000
26 1.5817 —0.2250 1.6000 —0.2000
27 1.7909 —0.1495 1.8000 —0.1600
28 1.8048 —0.0773 1.8000 —0.0800

1 1.8065 0 1.8000 0
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Again, if the known boundary quantities are assumed constant over the boundary
intervals, equations for the stresses of the form of Eq. (3.2) are immediately obtained
in which the appropriate integrals may be evaluated in a fashion similar to that outlined
in Sec. 3.

Details on the direct stress calculations and more extensive stringent tests of the
proposed method for calculating associated boundary quantities are currently under
investigation. Questions of effectiveness still remain.

First, an obvious test for a given problem is to start with n small and examine the
computed data as n increases. The reasonably successful results presented for so few
nodal points surely are in some measure due to the simple geometry of the domains
and smooth nature of the boundary data. The numbers n used were chosen for con-
venience; the associated amount of data along with the computer program fit easily
on the core of the (IBM 7094) computer. Attention in this first trial of the procedure
was focused on testing the approximations for the three types of boundary value prob-
lems for at least the variety of regions chosen, rather than on optimum programming,
convergence, or error analysis. The extent to which n may be increased, above which
ill-conditioning may result in a given problem is as yet unknown. Also, significant in-
creases in n require additional computer storage or at least some attention to program-
ming optimization. Tape storage, at present, increases computer time, but no problem
presented took more than three minutes on the computer.

Ixcept for the circular ring, nodal spacing is equal around the boundary. This
would seem desirable for optimum conditioning of the equations if the remarks of Symm
[10] are applicable here. To what extent unequal intervals may be used to perhaps
handle rapidly varying boundary data more effectively, also remains to be investigated.

Any specific discussion of the limited amount of data presented regarding the above
matters would, of course be inconclusive. The s 'utions presented serve, however, to
solidly indicate the scope of the method. Difficulties ncountered in more comprehensive
problems will be of a tactical nature to be overcome by a refinement in numerical pro-
cedures.

Inherent in the boundary formula procedure is an effective reduction in dimension
in which all approximations take place only on the boundary of the domain. Still, a
relatively high capacity high speed computer is required for the method to be generally
practicable. The wide availability of these is responsible for the fact that integral equa-
tions need no longer be useful only for theoretical investigations. Indeed, it is envisaged
that solutions to complicated boundary value problems, tractable perhaps by no other
means, may be expediently found by integral equation methods.

Acknowledgment. Thanks are due to Professors M. Stippes, M. Stern, and M. A.
Jaswon, for valuable discussions and helpful comments on the original draft, and to
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