
19

SOLUTIONS OF A NONLINEAR PARTIAL DIFFERENTIAL EQUATION
OF HYPERBOLIC TYPE*

C. E. BILLIGHEIMER
University of Toronto

I. Introduction. We discuss in this paper solutions of the equation

□ 2m = bu + cu (1.1)

where

□ ' = 4 + 4 + 4 (1.2)
dx2 dy2 di c2 dt y '

(1.1) is a nonlinear partial differential equation of hyperbolic type, which may be
regarded physically as the Klein-Gordon equation of a neutral scalar meson field with
added nonlinear term cu.

Nonlinear interaction terms have been introduced into the meson field equations in
considering such problems as the saturation of nuclear forces (Thirring 1953 (1)) or the
production of mesons in the collision of high energy nucleons (Heisenberg 1952, Schiff
1951). Further reasons in favour of such a procedure are summarized by Cap (1956).
The nonlinearity introduces considerable complication into the mathematical treatment.
Various authors (Hurst 1952, Petermann 1953, Thirring 1953 (2), Utiyama and Ima-
mura 1953) have proved the divergence of perturbation expansions in a qi; mtum field
theory with nonlinearity of the type we are considering, and renormalizatic does not
remove this divergency (Thirring 1953 (2)).

The classical discussion of solutions of the nonlinear wave equation (1.1) itself
seems of interest. We are particularly interested in bounded solutions, and it appears
from the special cases studied that, for example in the case of the initial value prob-
lem, bounded solutions exist for sufficiently bounded initial conditions. For larger initial
values of the function and appropriate differential coefficients say, we find that the
solutions become unbounded after a finite time.

We discuss in this paper the special cases of solutions of Eq. (1.1) that are obtainable
by solving an ordinary differential equation.

In Sec. I we obtain all possible cases in which Eq. (1.1) reduces to an ordinary
differential equation in the one-dimensional case, as well as some analogous circularly
and spherically symmetric cases in two and three dimensions respectively.

In Sees. 2 and 3 we then discuss in turn the solution behaviour of the two main
types of equation obtained, the cases a = \ and a > § of an equation of the form

su" + an' + bu + cu = 0. (1.3)

1. Solutions satisfying an ordinary differential equation. We study in this section
cases in which the solutions of Eq. (1.1) are obtained by solving an ordinary nonlinear
differential equation.
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We discuss first in Sec. 1.1 some fundamental invariance properties of Eq. (1.1).
In Sec. 1.2 we obtain all possible ordinary differential equations in the one-d; nensional
case, and extend these solutions to the case of two and three dimensions by the use of
the invariance properties of Sec. 1.1. In Sec. 1.3 we obtain ordinary differential equ -
tions for some analogous circularly and spherically symmetric cases in two and three
dimensions respectively.

We find that the equations obtained may all be expressed in the form

su" + au' + bu + cu2 — 0 (1.3)

where the constant a takes the positive values J, 1, § and 2.
In a subsequent paper (Billigheimer 1967-8) the behaviour of solutions of equations

of type (1.2) as s —> co with the parameter a > J are discussed in greater detail. The
behaviour of the solutions as s —» 0 will be examined in detail in a sequel.

1.1. Invariance properties. The equation

a2u=bu + cu2 (1.11)

is invariant under three main classes of transformations: Displacements, rotations and
proper Lorentz transformations. Solutions of (1.11) satisfying an ordinary differential
equation may then have the independent variable transformed according to these
transformations and will still satisfy the same ordinary differential equation.

In the succeeding work we may take the sign of the constants b, c in equation (1.11)
to be positive without loss of generality. For the equation (1.11) is invariant under the
simultaneous transformations

b — —b, u = u + b/c; c = —c, u = —u.

Similarly in the case of equation (1.2) we need only consider the case s > 0, as the
equation is invariant under the simultaneous tra. ^formations

s = —s, u = —u — b/c.

Throughout this paper we distinguish between the parameter c in equations (1.1),
(1.11) and the constant velocity of light c in the expression for D2 in (1.2).

1.2. One-dimensional case. We consider first the one-dimensional case of equation
(1.11)

uzz — ult/c2 = bu + cu2. (1-21)

We try to find functions g(x, t) such that a solution u may be a function of the single
variable g only. Assume g is such a function and u — u(g). Then Eq. (1.21) becomes

u"\gl c.~2 + u'[grx - \ g,}j = bu + cu (1.22)

where the primes indicate differentiation with respect to g.
We require that

and

where h, k are functions of g.

gl ~ "2 = Kg) (1.23)

= Hg) (1.24)
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Differentiating (1.23) with respect to x and t and substituting in (1.24) we obtain
the relation

9it h (g) k(f)) j7Y-\ f 1 r>r\
S.S. - W) -"V- (1'25>

Writing this as

I <><* <"> -if «(»■)"
we obtain by integration

g, = exp p( 0 + f H(dl) dffl]

where p(t) is an arbitrary function of t.
Again writing this as

d
dt I {6XP [~/ dgi } d92 = dt / GXP dt

we integrate to obtain

J jexp H(g1) dg, j dg2 = J exp [p(/,)] dt, + q(x)

where q(x) is an arbitrary function of x.
Solving this relationship for g, we obtain

g = F[P(t) + Q(x)]
where F is some function

P(t) = j exp [p(/0] dh , Q(x) = q(x).

We may now obviously choose as the fundamental variable simply

g = P(t) + Q(x). (1.26)
We note that this makes gxt — 0 and hence using (1.25)

Kg) = h'(g). (1.27)
To obtain the form of P(t), Q(x) we substitute from (1.26) in (1.23) obtaining

—]2 b ®2 = h[P(t) + Q(x)] = h(g).k dxJ c \dt

Differentiating with respect to t, we obtain

_l dP d2P = dh dP
c dt dt1 dg dt '

dP _ 2 d2P dh
dt 01 c dt2 dg

Similarly differentiating with respect to x we obtain

dQ _ _ d2Q dh
3x~ -7?"Tg
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Ignoring for the moment the space- or time-independent cases we deduce that

1 d2P d2Q
c2 dt2 ~ dx2
„2 j,2 = —~j~2 — constant = 2a say.

Hence
P = act2 + Pit + Yi , Q = — ax2 + &X + 72

where the /3,, 7, are constants and we obtain

g = a(ct2 — x2) + ^t + p2x + 7 (1-28)

where 7 = 71 + 72 •
Substituting into (1.22) we obtain the equation for u{g) accordingly

u"( — 4a<7 + 8) + u'( — 4a) = bu + cu (1-29)

where S = — fil/c1 + 4a7.
Thus if Eq. (1.21) has a solution u which is a function of the single variable g(x, t)

then g must be of the form given by (1.28). This condition, which as can be seen includes
the time-independent and space-independent cases, is the condition sought for the
partial differential equation (1.21) to reduce to an ordinary differential equation.

1.3. Equation types. The equations (1.29) may be divided into two types.
Type 1: Reducible type. If we take a = 0 in (1.28), (1.29) we obtain the equation

Su" = bu + cu2

where
g = Pit + P2x + 7, S = P22 - p\/c2.

This equation is free of explicit dependence on g and may be reduced to first order and
solved explicitly in terms of elliptic functions.

Taking j3, = c, /32 = 0 we obtain the space-independent case

u" = —bu — cu2 (1-31)

where u = u(g) = u(ct -(- 7) and similarly taking pt = 0, p2 = 1 we obtain the one-
dimensional time-independent case

u" = bu + cu2 (1-32)

where u = u(g) = u(x + 7).
Using the Lorentz-invariance properties of Eq. (1.11) we now obtain the plane-

wave and three-dimensional cases which satisfy the same equation. Thus we have the
equation

u" = —bu — cu2 (1-31)

where

or

or

u = u(g) = u(ct + 7),

u = u(g) = u[cp(t — vx/c2) + 7],

u = u{g) = u[cp(t - (v(Ix + my + nz))/c2) + 7]
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where

and the equation

where

or

or

or

/3 = (1 — v2/c2)~1/2, I2 + m2 + n2 = 1

u" = bu + cu (1.32)

u = u(g) = u(x + y),

u = «(gr) = w[/3(:r - vt) + 7],

u = w(i$f) = m[Zx + my nz + 7],

w = u(g) = + my + nz — y/) + 7].

By the substitution s = ±g2 respectively the Eqs. (1.31), (1.32) are transformed into
the equation

4 su" + 2 u' + bu + cu2 = 0 (1.33)

for s ^ 0 respectively.
In this form their relation to equations of Type 2 which we shall now consider be-

comes evident.
Type 2: Irreducible type. If we take a ^ 0 in (1.28), (1.29) we may put

s = g - 5/4a = a[c2(t + A)2 - (x + £)2]

where

A = fll/2ac2, B = -p2/2 a.

Choosing a = 1 and taking the constants .4 = B = 0 we then obtain Eq. (1.29) in the
form

4sw" + 4 u' + bit + cu2 — 0 (1-34)

where s = ct2 — .tf.
1.4. Circularly and spherically symmetric cases. We derive in this section equations

of Type 2 for the three-dimensional spherically symmetric case.
The corresponding equations in the two-dimensional circularly symmetric case are

obtained in a precisely parallel way.
We take the three-dimensional spherically symmetric form of Eq. (1.11)

2 1
urr + - ur — in,, = bu + cu (1.41)r c

where r2 = (x — x0)' + (y — y0)2 + (2 - z„)~.
Proceeding similarly to the preceding work, we require a solution u(g) where g — g(r, t).

This function g must satisfy simultaneously the equations

gl - js g] = h(g) (1.42)



24 C. E. BILUGHEIMER Vol. XXV, No. 1

and

9" + ~ Sr - p Sit = Kg) (1-43)

where h(g), k(g) are functions of g.
Differentiating (1.42) with respect to r and t and substituting in the second equation,

we obtain

h> - h-1^ + - g, = k. (1.44)
9rgt r

We shall confine ourselves to cases where grt = 0, obtaining

g = P(t) + Q(r).
Then we have from (1.44)

f gr = Kg) - h'(g) = K(g),
-h- = -drK{g) 2 dr~

Integrating we obtain

/ K(g) = r" + P{1)

which we may solve to obtain
g = g[r2 + P{t) ].

We may take simply
g = r2 + P{\ (1.45)

To obtain the form of P(t) we substitute from (1.45) in (1.42) obtaining
i jp2

4r* ~?lit = h[r* + p(<)] = h(9}-

Differentiating with respect to t, we obtain

Hence either

i o JPdP. __ dh dP_
~c2 dtdf dg dt'

2 d2P dh
(a) c2 df dg

or

<»> f " »•
Differentiating similarly with respect to r, we obtain

8 r = ^-2 r,dg

Hence 3^ = 4.dg
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We consider firstly case (a) and we have

_2 cFP_dh =
c2'dt2 dg

Hence P = —c2t2 + fit + 7.
Hence g = r2 — c2i2 + j3< + 7.
Then we obtain from (1.42), (1.43) the equation for u

u"(4:g -f 5) + u'-8 — bu — cu2 = 0.
where 8 = —47 — (32/c2.

Putting s = — (<7 + 5/4) = — r2 -f c2(t — 0/2c2)2 and taking the constant /3 = 0,
we obtain the equation in the form

4 st<" + 8m' + bu + cu2 = 0 (1-46)

where 5 = c't2 — r2 = cY — x2 — if — z2 say.
In the two-dimensional case, we obtain analogously

4«t" + 6 u' + bu + cu2 = 0 (1.47)

where s = c2t2 — r2 = c2t2 — x2 — y2 say.
Considering now case (b) above we have

dP/dt = 0;
Hence p = 7.

Hence 3 = r2 + 7.
Then we obtain the equation

u"(4g — 47) + u'-6 — bu — cu — 0.

Putting s = —g + 7 = — r2 we obtain the equation in the form

4s*!" + 6 u' + bu + cii =0 (1.48)

where s = — r2 = —x2 — y' — z2.
We note that this equation is of the same form (1.47) as in the case where

s = c2t2 - x2 - y2.

In two dimensions we similarly obtain the equation

4 su" + 4 u' + bu + cu = 0 (1.49)

where s = — r" = — xi — y".
This equation is of the same form (1.34) as in the case discussed in Sec. 1.3, where

2 .2 2
S = C t ~ X .

We note that we may state the reducible first cases of Sec. 1.3 in an analogous way.
For, as we have seen, Eqs. (1.31), (1.32) of Sec. 1.3 may be written in the form

4 su" + 2 u' + bu + cu2 = 0 (1.33)

where s = c2t2 and s = — x2.
We consider in the following sections solutions of the two main types of equation

obtained, the cases a — \ and a > | of an equation of the form
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su" + au' + bu + cu2 = 0
where we write b — lb, c = jc.

2. Solutions of the equation su" + \u' + bu + cu2 = 0. We consider in tb'3
section the equation

su" + + 5m + cu = 0. (2.1)
We need only discuss the behaviour of the solution of the equation for positive

values of s as (2.1) is invariant under the simultaneous transformations s — —s,
u = —ii — b/c.

Setting t = s1/2 in (2.1) we obtain the equation

ii + bu + cu = 0 (• = d/dt) (2.2)
where b = 46, c = 4c.

In this form we see that the equation, which is free of explicit dependence on the
independent variable t, may be directly integrated a first time. The solutions may be
readily discussed at this stage, or alternatively we can find an explicit expression for the
solution in terms of Jacobian elliptic functions.

One of the constants of integration is a "homology constant" h, since for any solu-
tion y = j(t), we have a corresponding solution ?/ = /(< + h).

Kurdgelaidze (1954) in the third section of his paper has obtained similar plane
wave solutions for the equation

□ m = bu + cu3

in which the nonlinearity is cubic instead of quadratic as in our case.
2.1. Solutions of the Equation u + bu ~\- cu2 = 0. We consider solutions of

ii -f- bu 4- cu' — 0 (2.11)
determined by initial conditions u = u0 , u = 0 oA t = 0 and also solutions unbounded
at the origin.

We find that for — b/c < u0 < b/2c we obtain oscillatory solutions about u — 0,
while for u0 < —b/c and u0 > b/2c we have solutions becoming negatively unbounded
for finite t.

There is a transition case u0 — b/'lc in which the solution tends asymptotically to
the limit —b/c, as well as the trivial solutions u = 0, u = —b/c.

Integrating Eq. (2.11) we obtain

= lb(u0 — u) + \c{u\ — u). (2.12)
We can exhibit the solution behaviour of (2.11) by means of the graph in the "phase-

plane" u — u (Fig. 1). The arrows indicate the sense of description of the curves as t
increases.

Integrating (2.12) we obtain

1 = Iu ^c(wo - f')[(5«o + 3fr/4c + v)2 + 2(uo + b/2c)2 - b'/c2])",/2 d.•

= ^ (§c(a - v)(v - $)(v - y)\'U2 dv (2.13)

where a, 13, y, are functions of u0 .
We obtain explicit representations for the solutions in terms of Jacobian elliptic

functions by inverting (2.13).
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Fig. 1

We thus have apart from the trivial solutions u = 0, u = — b/c, the following three
main types of solution behaviour.

Type 1: Oscillatory solutions. For — b/c < u0 < b/2c we have closed curves in the
u — u plane, corresponding to bounded oscillatory solutions of constant amplitude.

The explicit expression for the solutions for 0 < u„ < b/2c is

u — Uo — (uo — Ui)sn((ic)1/2 8 t, k)

where 8~ = a — y, k2 = (a — 13) (a — y) and u0 = a, «i = 0 are the maximum and
minimum of the oscillations respectively.

For — b/c < m0 < 0 we have

u = ux — (Ui — u0)cd\(&y/2 8 t, k)

where = /3 — y, k" - (f3 — a, /3 — y) and u0 = a, u, = 0 are the minimum and
maximum of the oscillations respectively.

The time of traversal of the closed curves in the u — u plane and thus the period of
the oscillatory motions is given by T = 2K(k)/{\c)l/2 8 (where K(k) is the complete
elliptic integral of the first kind), increasing as the amplitude of the motion increases
from the linear value 2ir(6)1/2 to infinity. This dependence of the period on the ampli-
tude is characteristic of nonlinear oscillations, and is to be contrasted with the inde-
pendence of period and amplitude in the linear case.

Type 2: Unbounded solutions. For ua > b/2c and u0 < —b/c the solutions become
negatively unbounded for finite t.

The explicit expression for the solutions for the cases u0 > b/2c and u0 < — 36/2c
may be written as

u = u„ + A{cn[{lcA)U2t, k] - 1 }/lcn[(§cA)'/2t, k] + 1}
where A1 — 3(u% + u„b/c), k2 = \ + 3(m0 + b/2c)/4:A, and for —3b/2c < u0 < —b/c

u — Un (y u0)sc2(Qc) St, k)

where <52 = j8 — a, 1/ = (B — y)(0 — a). In the limiting case u0 = — lib/2c we obtain

u — u0 sec2 %bU2t.

By change of origin of t we obtain a corresponding solution negatively unbounded at
t = 0.
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We also have the limiting case of the solution unbounded at the origin which tends
to the value — b/c as t tends to c°.

u = b/2c — 26/3c. coth2 %b1/2t.

Type 3: Transition case. For ua = b/2c we have the transition case in which u re-
mains bounded and tends asymptotically to the limiting value — b/c as t tends to «>.

u = b/2c — 36/2ctanh2 %bl/2t.

3. Solutions of the equation su" + au' + bu + cxi = 0. We investigate in this
section the solution behaviour of the general equation

su" + au' + bu + cm2 = 0 (3.1)

for parameter values a > 5 by means of a graphical method [cf. Finkelstein et al (1951)
and Mitskevitch (1956)] based upon the consideration in a phase-plane of the energy
of a corresponding one-dimensional motion analogous to that considered for the case
a = 5 in Sec. 2.2.

Again we need only consider the case s > 0 as (3.1) is invariant under the simul-
taneous transformations s = — s,u = —u — b/c.

For s > 0 we put t = s1/2 in the equation (3.1)

su" + au' + bu + cu = 0

obtaining the equation

u + (2a — 1 )u/t + bu + cu2 = 0. (3.2)

This may be written in the form

£ (i«2 + Ibu2 + \cu3) - -(2a ~ 1} u (3.3)

provided u ^ 0.
If we regard u, u as the position and velocity respectively of a representative particle,

then this equation describes a nonconservative one-dimensional motion in which t
("time") occurs explicitly.

The energy for the corresponding conservative motion defined by the Eq. (3.2) with
the 1/t term deleted is

E = -f- 5&U2 -f- Jcu3
= iu2+ V(u)

where V(u) = \bu + Jew3.
The equilibrium points of the motion defined by dV/du = 0 correspond to the

special solutions u = 0, —b/c. u — 0 is a stable position of equilibrium, u = —b/c is
unstable.

If we consider the u — u plane, the point representative of a conservative motion
moves on the curves of constant E, as illustrated in Fig. 2 below. The arrowheads indi-
cate the sense of traversal of the curves with increasing t (and s). These correspond to
solutions of Eq. (3.1) with a = \.

From the equation of motion we derive

^ (2a_pJ) .
au t
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Hence for cases a > 5, dE/dt is always negative for t > 0, and the representative
point of an actual motion always moves inward across lines of constant E. Such a tra-
jectory, wherever it starts, must terminate at either w = 0 or w = — &/c or go off to
infinity negatively, depending upon the initial values u0 , u0 and the initial time t0 at
which these are taken. The slope of the curves in the u — u plane is given by

du u ut
du u (2a — 1 )ii + t{bu + cu )

Representative curves that may be expected are indicated dotted in Fig. 2 below.
If we regard the solutions as classified according to the initial value u0 at s = 0,

we might expect to be able to summarize the solution behaviour as s —> + <*> in the
following theorem:

Theorem I. There exists a number A > b/2c such that if the solutions of (3.1) with
a > | satisfy initial conditions u — u0 , u = 0, at s = 0, we have for s > 0:

(i) The solutions remain bounded and oscillate about the value u = 0 with diminishing
amplitude as s tends to + <» if —b/c < u0 < A, with diminishing amplitude if a >

> u

Fig. 2

—Conservative Motion (a = §). For curves 1
—Actual Motion (a > J) 2

3, 4,5

E > E„
E — Eo — b3/6c2
E < Eq
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(ii) For uQ < — b/c the solutions tend monotonically to — ̂  as s increases.
(iii) For u0 > A the solutions tend monotonically to — <*> as s increases.
(iv) For u0 = A we have the transition case where solutions tend asymptotically to

— b/c as s tends to + 00 •
We may alternatively classify the solution behaviour by considering varying initial

slopes Wq at a point s = s0 > 0 with u = u0 , u' — u'Q .
The behaviour may thus be summarized as follows:
Theorem II. There exists a number P and a number Q (P < Q) such that, if the

solutions oj Eq. (3.1) with a > \ satisfy initial conditions u = u0 , u' = u'0 at s = s0 > 0,
we have for s > s0 :

(i) The solutions are bounded and oscillatory about u = 0, tending to 0 as s —> °° for
P < u'0 < Q.

(ii) For u'0 < P the solutions tend ultimately monotonically to — » as s increases.
(iii) For u'a > Q the solutions tend ultimately monotonically to — °° as s increases.
(iv) For u'a = P and u'0 — Q we have the transition cases in which u tends ultimately

monotonically to u = —b/c as s —» «>.
The solution behaviour in the case of equations with a < J may be similarly dis-

cussed. The equation with a = 5 corresponding to the case of conservative motions
can be integrated directly in terms of elliptic functions. The oscillatory solutions here
have fixed amplitude and period depending on the amplitude. They also provide plane-
wave solutions of the Klein-Gordon equation mentioned earlier:

□ 2u = bu + cu .

In the case of the nonlinear equation with the parameter 6 = 0 asymptotically
oscillatory solutions are not found. The solution behaviour is thus essentially different
from that for the equation with M 0, c ^ 0 wl 'ch we have discussed.
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