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A DISPLACEMENT POTENTIAL REPRESENTATION*

BY

J. M. DOYLE (University of Illinois, Chicago, Illinots)

1. Introduction. In a recent paper, Mindlin [1] has obtained the displacement
equilibrium equations for linear elastic medium in which the stresses are functions
of the strains and the first and second strain gradients. It is the purpose of this note
to establish the completeness of a displacement potential, for solutions of these equations,
which is an extension of the well known Somigliana-Galerkin representation in classical
elasticity. The potential itself satisfies a twelfth order partial differential equation.
It may be resolved into a sum of six functions, each satisfying a lower order equation.
In addition, a potential is given which may be used to generate solutions of higher
order field equations.

2. Displacement potential. The field equations being studied are [1]:

V’DIDVV-u —a’DiDV XV Xu+F=0 2.1)

where a and b are the classical propagation speeds of equivoluminal and dilatation
waves, u is the displacement vector, F is the body force per unit mass and the D operators
are defined as follows:

D=1 - V. (2.2)

In this definition, the I, are material constants. In what follows, all functions are assumed
to have sufficient smoothness to permit all necessary operations to be performed.
Consider a general solution of the form:

1

u =33 DIDIVV g - 1

2 DIDiV X V X g. (2.3)
Substitution of this displacement vector into the field equations (2.1) yields an equation
for g:

V*DiD;D;Dig = —F. 24)

This is a twelfth order partial differential equation. Mindlin [1], on the other hand,
developed a representation, resembling in structure the Popkovich-Neuber formula
of classical elasticity, in which the vector and scalar potentials each satisfy a sixth
order equation.

Utilizing a number of results from potential theory, one may show that a particular
integral of Eq. (2.4) is given by:

e®) - [ sl + 4 - % papr ey, (2.)
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where D is a regular region of space in which u is defined, and r is the distance from
P to Q. The five constants A, B, , must satisfy the following set of linear equations:

t=a; L=8 L=y, L=3
A=a+B+v+3
B,+B,+ B, + B, = —A® —aff —ay —ad —fy —B8 —7$
B+v+ 0B+ @+y+ 8B+ (@+ B8+ 8§B; + (@ + B+ 7v)Bs
= aBd + ayd + Bvs + aBé — A(aB + ov + Bv) (2.6)
By + B6 + v8)B: + (ay + ad + v8)B, + (@B + ad + B8)B; + (a8 + ay + Bv)B,
= —afyd + A(aBd + ayd + Byd + aBy)
ByoB, + aydB, + aBfdB; + afyB; = AaBys.

To verify the completeness of the representation described, define g as a combination
of derivatives of a function h:

g = b’DiD;VV-h — ¢’D;DiV X V X h. (2.7)
g must satisfy Eq. (2.3), hence h is constrained to obey:
V*DiD:D;D:h = u. (2.8)

A particular integral of this equation follows immediately from Eq. (2.5). Therefore,
for any given displacement u a vector h can be constructed; from Eq. (2.7) g is found
corresponding to h. This shows that the representation is complete.

The function g may be decomposed into six components obeying the following
equations:

Dig. = —B,F, i=1,2,3,4,
V', = —F, 2.9
V2g6 = —AF.

The various functions are defined in terms of combinations of derivatives of the re-
sultant g:

g = BIV4D§D§ng,
g. = B,V*'D:iD;Dig,
g3 = B3V4D3D;ngy

(2.10)
g4 = B4V4DfD§D§gr
gs = DD;D;Dig,
g = AV’DiD;D;Dig.

It can be shown that when the constants A, B, , satisfy Eqs. (2.6) the following holds:

g=2¢g. (2.11)
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In the event that I, = I, = I; = 0, [, 5 0 the field equations reduce to the equations
of couple-stress elasticity [2], furthermore the stress function representation given here
reduces to that given in [3].

3. Extension to higher order equations. One might conjecture that if the con-
stitutive relations are assumed to include third and higher strain gradients, the resulting
equilibrium equations would be:

b’D} --- DiVV-u — @D,y -+- D,V X V Xu+ F =0. (3.1)

An argument in favor of such an extrapolation could be based on the fact that the
equations should be invariant under coordinate transformations and since

VXV Xu=VV-au-Vau (3.2)

it follows that by proper choice of I; in the operators of (3.1) any set of even order
field equations could be cast in the form stated. For such a set of equations, a general
solution similar to (2.3) is:

1

u=$Di+1“' gnvv.g—?Df---DiVXVXg- (3.3)

In turn, the governing equation for g becomes:

Vv‘D}--- Dig = —F 3.4)
and finally, a particular integral for equation (3.4) is given by:
_1 rLA_ S p &P (—r/zo}
g(P) - 47[' o F(Q){2 + r - ;B,l; r dTQ . (3.5)

The constants are obtained as before, by equating coefficients of the various deriva-
tives in the equation:

D} --- Di,F + AV’D} --- Di,F 4+ B,V'D; --- Di,F
4+ - 4+B,V'D*--- D} _F=F 3.6

and solving the resulting set of 2n + 1 linear equations. Proof of completeness and
resolution of g into component functions is accomplished in exactly the same way as
in the previous section.
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