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BIFURCATION OF PERIODIC SOLUTIONS IN A NONLINEAR
DIFFERENCE-DIFFERENTIAL EQUATION OF NEUTRAL TYPE*

BY

ROBERT K. BRAYTON

IBM Watson Research Center, Yorktown Heights, New York

Abstract. The existence of a self-sustained periodic solution in the autonomous
equation

m'(t) — au' (t — h) + /3u(t) + ay u(t — h) = «/(w(r))

is proved under appropriate assumptions on a, ft, y, f and h. The method of proof con-
sists in converting this equation into an equivalent nonlinear integral equation and
demonstrating the convergence of an appropriate iteration scheme.

In this paper we consider the equation

m'(t) — au'(r — h) + /3w(r) + ayu(r — h) = ef(u(T)), (1)

where h > 0 and a = aa(l + e). The existence of a periodic solution will be proved
for small t > 0 under appropriate assumptions on the parameters a0, (3, y, and /. The
left-hand side of this equation is a linear difference-differential operator of neutral type
(for a definition see [1]). The existence of periodic solutions for functional-differential
equations which include difference-differential equations of retarded type but not
neutral type has been discussed by Krasovskii [2], Shimanov [3], [4], and Hale [5].
In all these cases, the equations are of the forced type where the right-hand side is a
2?r-periodic function of r. Equation (1), which we consider, is autonomous, and we look
for a self-sustained oscillation.

Difference-differential equations of the type (1) arise from electrical networks such
as the one shown in Fig. 1. The equations of this network are

Udi/dt) = -dv/dx, 0 < ^ < J (2)

C{dv/dt) = —di/dx,

E — v(0, t) — Ri(0, t) = 0, Ci(dv(l, t)/dt) = i{ 1, t) — g(v( 1, t)),
where L, C are the specific inductance and capacitance in the transmission line. The
question of the existence of a periodic solution of some unknown period T can be posed
by giving the additional boundary conditions

v(x, 0) = v(x, T), i(x, 0) = i(x, T).

Thus, we have a boundary-value problem for a hyperbolic partial differential equation
with boundary conditions given on the rectangle shown in Fig. 2. Of course, in general,
a boundary-value problem for a hyperbolic equation is not well posed. The difference
here is that the boundary t — T is free to be chosen.
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Fig. 1. Transmission Line Network

As described in [6], Eqs. (2) can be written in the form

C(v'(t) + Kv'(t - h)) + (l/e - - K(\/z + g*)v(t - h) = - h)), (3)
where IC = (Ii - z)/{R + z), z = (L/C)u2, li = 2(LC)1/2, f(v, w) = 0(v3 + w3) and
g* is the derivative of g(v) at some point v = v0 . Clearly, Eq. (3) can be brought into
the form of Eq. (1) with the transformation v = t/2u except for the fact that / depends
on s(i — h). However, in what follows, there is no essential difficulty in handling this
case, and for simplicity we neglect this generalization.

In Eq. (1), let t = ut where w is unknown, and let us seek a periodic solution of
period 2?r in t. With v(t) = u(t) Eq. (1) becomes

Lt[v\ = w(v'(t) — av'(t — uh)) + 16v(t) + ayv(t — coh) = (4)

The linear operator Lt is a difference-differential operator of neutral type and, as we
shall see, the parameter a0 appearing in a = a0(l + e) will be chosen so that there
exists exactly one pair of purely imaginary characteristic roots of L0 .

The characteristic equation associated with the operator Lt is

g(sco) - sw(l — a exp (—sioh)) + 13 + ay exp (—suh) — 0, (5)

where s is a complex number. We shall prove the existence of periodic solutions of (4)
for e small under the condition that for a = a0 Eq. (5) has roots s« = ± iw0. First,
we prove the following

Lemma 1. For y > /3 > 0 there exists an infinite set of real pairs (a0 , "o) such that

to0( 1 — ao exp ( — iw0h)) + /3 + a0y exp ( — iw0h) = 0, (5a)

where aa < 1.
Proof: By writing (5a) in its real and imaginary parts and solving for sin w„h,

Fig. 2. Periodic Cell
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cos ca Ji, we find

S1T1 = ..
a«Uo + 7

1 wl + yt
2 . 2

«0 &0 + 7

, W0 7 + P ,n\sin co0h = 2 i—2 , (6)

, 1 Wo + 7/3
COS W0ft = 2 ~j 2 , (7)

which can be combined to yield
2 2 o2

2 _ «o7 ~ P
Wo ~ 21 — «0 (8)

tan cooh = -"i7 + ^ • (9)
Wo — TP

The solutions of Eq. (9), which is independent of a0, can be found graphically as shown
in Fig. 3. Clearly for any w0 satisfying (9), there exists an a20 such that (8) holds because
(«o72 — /32)/(l — «o) can be made to range between —/32 and + oo by varying between
0 and 1. Eqs. (8) and (9) give pairs u0 , <*o and by taking the correct sign on a0 , the
pairs co0 , a0 satisfy (5a). Arranging the co0 in increasing order starting with co0 = 0 the
corresponding a0 alternate in sign starting with a0 = —f}/y.

Note that for a = 0, there is only one root of (5), namely s« = —13 < 0. As a is
increased, there is an infinity of roots which all lie in the left-half sw plane. When
a — — p/y, we have the first root crossing the imaginary axis at sw = 0. Similarly,
when a equals the first positive a0 , we have a pair of roots sw = ±zw0 crossing the
imaginary axis. The remainder of the roots of (5) lie in the left-half plane because of
continuity with respect to a. For all other pairs a0 , w0 there is at least one root in the
right half-plane. For this reason we expect that the periodic solution associated with the
pair a0 , w0 corresponding to the first positive value of a0 is the only stable periodic
solution.

However, since existence and stability are independent concepts, the following
theorem is applicable for any solution a0 , w0 of (5a). The theorem states the existence
of a periodic solution* near the function v = 2a* cost where a* satisfies the bifurcation
equation

oi 2-//3
Fig. 3. Graphical Solution of Equation (9)

*By solution, we mean a continuously differentiable function v(t) which satisfies (4) point-wise.
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a* = 77^— f /(2a* cos t) cos t dt (10)
4TrZ0 Jo

and x0 is specified by (12) below. If a* = 0, the theorem is trivial, and therefore, we
rule this out. An example of a nonlinear function / where there is a nonzero solution
of (10) is f(v) = —v3. Then the solution is a a* = [~x0/3]l/2 which is real since it is
shown below that x0 < 0.

Theorem. Let (a0 , u0) be any pair satisfying (5a) where co0 ̂  0 and assume that
there exists a real solution a* ^ 0 of

1 f2r
F(a*) = a* — -— / /(2a* cos t) cos t dt = 0

ZttXq J o

such that \dF/da\a=a. > n > 0 where x0 is specified by (12) below. Also assume that
/ is continuously differentiable, /(0) = /'(0) = 0, and \f(v)\ < v for |y| < 4 |a*|. Then
for small « > 0, there exist functions u = co(e), v = v(t, e) such that v(t, e) is a 27r-periodic
solution of (4) with co = «(«). Furthermore, w(0) = w0 and v(t, 0) = 2a* cos t.

Note. For e = 0, a two-parameter family of periodic solutions exists of the form
v = ae" + ae~" where a is an arbitrary complex number. This follows since (5a) implies
that Lote*"] = 0. However, since the equation is autonomous, this family is a one-
parameter family modulo an arbitrary translation of time. We represent this family
by v(t) = 2a cos t where a is an arbitrary real number. The above theorem implies
that as e becomes positive the solution v(t) = 2a* cos t bifurcates into a neighboring
periodic solution with period in the r variable equal to 2ir/u(e).

Proof of Theorem: The first part of the proof will be to transform Eq. (4) into
an integral equation. For this purpose we make the following definition

qt(ik) = exp ( — ikt)L,[exp ('ikt)]

and establish some properties of Clearly from (4) or (5),

qe(ik) = iku>{\ — a exp (—ikuh)) + /? + ay exp (—ikwh), (11)

where a = a0(l + e) and co = co(e) is an unspecified function of e. If (a0, co(0)) is a pair
satisfying (5a), then

q0(±i) = 0.

Let w = u0 + eco! and define x(ccx , «) + iy(a^ , e) = q,(i)/e- Now x is bounded away
from zero if e is small enough and o>, > 0. This follows since

x0 = lim x(uii , t) = tOi(—o;0 sin aj0h — a0w0h cos oi0h — a0yh sin w0h)
t—>0

+ a07 cos a)0h — a0u0 sin cc0h.

Using (6) and (7) this becomes

X0 —
—0)0(7 4~ P ~l~ ̂ (^0 H~ 72))

2 1 2
Wo + 7

- 18. (12)

Hence, if 0 < , then x0 < —0 and by continuity x(wx , e) < —(3/2 for e small. For
future reference we compute
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y0 = lim y(o3i , e) = wjl — a0 cos co0h — a0yh cos u0h + aQu0h sin u0h]
1—0

— a0y sin co0h — aoco0 COS u0h

_ [ 7(7 + P) + hP(y- + cop)"] . .
— COi 2 I 2 ^0 (1^/L w0 + 7 J

which, we note, can be zero for > 0.
In addition, we note that |ge(ifc)| > 77 > 0 for ^ ±1 and e small. For if

lim^co |ge| = 0, kn ±1, then for n > N(e)
2 2 02

7 2 2 & y P 1 \
knu = — 2 + C/(e).

1 — a

But (a272 — y32)/(l — a2) = w2 + 0(e) and, therefore,

&n(«0 + «<>l)2 = COo + 0(e), fc„ ^ ±1

which is impossible if e is small.
Now we want to show that if v(t) is a periodic solution of (4), then it is necessary

and sufficient that v(t) is an H\ solution of the following nonlinear integral equation

v(t) = f f" K*(t - s)f(v(s)) ds (14)
JjTT J 0

where

K'(l - £ 'exp^|"5>>- (15)

We note that Eq. (14) has a free parameter uj, occurring in qt(ik).
To show necessity, let v(t) be a real periodic solution of (4). Then v and j(v) (since /

is differentiable) have Fourier expansions
Ziktvke

k

1(v) =
k

where vk = vk, jk = /t . Multiplying (4) by e~'t'/2ir and integrating, we have

f f" e-ik,Lt[v) dt = ~- f" m))e~a' dt
Z7T J 0 J 0

vhq,(ik) = tfk .

Since \qt(ik)/t| is bounded away from zero for small e, then we can solve for vk ;

tfk
vk = q„{ik) '

*The spaces H0 and Hi denote Hilbert spaces with metrics IMIo = (l/2x) So" w2 dt and ||tc||o+i =
IMIo + IMIi j respectively, where the notation ||t»||J will be used for the pseudo-metric (l/2?r) foT
(dw/dt)2 dt.
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and, therefore, v is the convolution of / and K* given by (15); i.e.,

<t) = ~ K*(t - s)f(v(s)) ds. (16)

To prove sufficiency, let v be an Hi solution of (16). Then, v is continuously dif-
ferentiate for the following reasons. First, v G Hx =» j(v) G Hi since / is continuously
differentiate. Hence, \ikfk\2 < °°. Differentiating (16) twice, we have

1 r* —tk2 exp (ik(t — s)) „ , ,= ?—im—m))d"
which is in H0 since for large k, |1 /q,(ik)\ = 0(l/\k\), and hence,

ek2f,v\\l = £ qt(ik) <Ci E \k1k\2 < 00

provided e is small. Thus, v(t) G H2, which implies that v(t) is continuously differentiate.
Note that by continuing we could get that v G Hk + l if / G Ck .

Hence, we may operate with Le on v which yields

LM = kl VLJexpm~s))]/(u(s))ds

= ^ fg Z) exp (ik(t - s))j(v(s)) ds

= e/(y(0);
i.e., v is a solution of (4).

We now rewrite Eq. (16) as three integral equations. For any real periodic function
v(t) of periodic 2tt, let

v = ae" + ae~" + u{t), (17)

where a is some complex number and u is orthogonal to e±>l, i.e., (l/2w) /J' u(t)e±" dt =0.
We may assume that a is real since v(t) is a solution if and only if v(t -f <f>) is also a solu-
tion. Thus, equation (16) can be decomposed into the following simultaneous integral
equations,

1 r2r
ax = — / cos t dt, (18)

Zir J o

ay = f(v(t)) sin t dt, (19)

u(t) = ^ K(t ~ s)/(t'(s)) ds, (20)

where

K(l - s) = E CXP (t'y, ~ S)) , (21)
ky±± 1 Qe\MZ)

and v is given by (17) where a is real. Here, x + iy = q,(i)/e, as before. The problem
is to prove for small e the existence of a solution (a, u(t), «). This will be done in two
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steps. First, we obtain an H1 solution, u[t, a, coj, of Eq. (20) where w = w0 + eco1 ,
a and co1 are considered free parameters, > 0, and |a — a*| < \ |a*|. Then, we use
the implicit function theorem to prove the existence of a, a>, such that Eqs. (18) and
(19) are also satisfied.

The existence u(t a, ojt) £ 77j of (20) will be shown using the following iteration

u0(t, a, wi) = 0,
|.!x

un+1 K{t — s)/(2a coss + un(s)) ds, n = 0, 1, • • • . (22)
^7T J o

The proof is by induction with the following induction hypotheses for n = 1, 2, 3, • • • ,

(a) max [un(t) | < 0(e) (independent of n),
0<K2x

(b)* ||w„+1 - u„llo.i < i IK — w»-i||o •
The first hypothesis guarantees that vn(t) = 2a cos t + un(t) is bounded in the maximum
norm; i.e., max0<IS2, |»»(0| < 2 |a| + O(e) < 4 |a*|; and hence, by assumption, |/'(f„)| < v.
The second hypothesis implies the convergence of the sequence un in IIl since

||w„+i Un | |o,l ^ (?) 11^2 Mi||o

||Wn Wm||o,l 2 ||m„ + i Mm||o 5; (§) 11^2 Willo

which approaches zero as m, n —> ®.
We use the following

Lemma 2. Let 36/> = (1/27r) Jl' K(t — s)<£(s) ds where
<*(<-»>

K(,-s) = .S^r
and 4> is 27r-periodic. Then

l|3C0||S.i < c2 M\ I,
where

ik
c 1 max

k?i± 1
< 00 •q<(ik)

Proof: If <f>t denote the Fourier coefficients of <j>, then by Parseval's equality,

4>kll^llo
k*± 1

where c0 = max^±1 |l/ge(ifc)|. Similarly,

WwWl = Z

qe(ik)

ik<t>h

<cl M\l ,

2 <c Mil,q((ik)

where c = max4itf±1 \ik/qt(ik)l > c0 . It remains to be proved that c is finite, but this
follows since |<?<(t7c)| > y > 0 for e small, k ^ ±1, and l/\qe(ik)\ = 0(|A;|_1), |fc| —>
This completes the proof of Lemma 2.

*The notation IMIo.i < 9 denotes ||u)||o < g and [|u.'||f < g.
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To prove (a) for n = 1, we use the fact that

max \w(t)\ < (27r)3/2(||w||0 + IMI0- (23)
0<K2r

From Lemma 2 and (22) we have

IMIo,! < tc |\f(2a cos 0||o ,
and since we assume |a — a*| < \ |a*|, then |2a cos t\ < 3 |a*|, |/'| < v, and hence (since
1(0) = 0),

||«i||o,i < 3tcv |a*|.

Thus, by (23),
max \ui(t)\ < 0(e),

0<t<2ir

proving (a) for n = 1.

To prove (b) for n = 1, we compute

u2 - ux = ~ I K(t - s)[/(w1(s) - j(v0(s))] ds,
^7T J o

where vn(s) = 2a cos s + u„(s). By Lemma 2 and the fact that 1^1 < 4 |a*|, |y0| < 4 |a*|,
we have

||«2 ~ Wilio.i < (eCv)2 ||«i — Mollo < I ||«i — Mollo

for e < \cv proving (b) for n = 1.
Now assume (a) and (b) hold for n < N — 1. Then, by (b)

| |w„ Wn-l | 10,1 ̂  i | \Un-l Un-2 I 10 > W = 2, 3 , " ' , JV

and by (23)

max \uN(t)\ < (27r)3/2(|\un||0 + ||wjv||i)
0<t<2ir

< (27r)3/" (||«„ — wn-i||o + ||m„ — w„-i||i)
71= 1

_ N

< (2x)3 2 (1/2)" 1 ||Mi||o + ||wi 110 +

< 4(27r)3/"3€i' |a*|

< 0(e).

Thus, (a) holds for n = N.
Using (a) we have 1^(01 < 4 | a*| which gives us that |/'00| < v. Then by Lemma 2

||WjV+l Wjv||o,i ^ («c) H/(fjv) /(fw-l)llo

< (eCv) | |Mjv Ma'-i||0

5: 5 | |w.y MiV-l||o

proving (b) for n = N. By induction (a) and (b) hold for all n proving the convergence
of un in Hi .
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The last part of the proof consists of proving that for e small there exist a(e), coi(e)
such that Eqs. (18) and (19) hold. The proof uses the implicit function theorem.

Define

1 r2'
F(a, w! , «) = ax(ui , e) — — J /(2a cos t + u*{t, a, , e)) cos t dt,

and
1 r2r

G{a, ui , e) = ay(o)! , e) + — J /(2a cos t + u*(t, a, «i , e)) sin t dt,

where u*(t, a, , e) is the solution of Eq. (16). Equations (18) and (19) are simply

F(a, on , e) = 0,

G(a, «i , e) = 0.

For e = 0, we have the solution

a(0) = a*,

wi(0) =
(24)

0^4 + 72)
y(y + 0) + h/3(y2 + coo)

This follows since u*(t, a, , 0) = 0, so that

1 r2T
F(a*, co! , 0) = a*xQ — — / /(2a* cos t) cos t dt = 0

^7r J o

by (10). Similarly,
1 /"2r

G(a*, cox , 0) = a*y0 + — / /(2a* cos /) sin t dt = a*?/0
Ztt J o

where we have used the fact that /(2a* cos t) is even function of t. With the choice of
given by (24) and using (13) we see that yQ = 0.

It remains to be shown that

dF dF
da dwi

dG dG
da do)!

5^ 0. (25)

a = a*; a>i = «i(0); < = 0

However, there still exists the question whether these derivatives exist. The argument
for this will be omitted since it provides nothing interesting. The basic argument consists
of differentiating Eq. (20) with respect to a and coj and showing by the contracting map
theorem that there exist unique solutions of the resulting equations. Then one can show
that the difference quotients

u*(t, a + Aa, cdt , e) — u*(t, a, , e)
Aa

and

u*(t, a, + Aa>i , t) — u*(t, a, oi, , e)
Awi
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are uniformly bounded in H1 and equicontinuous, and, therefore, have a convergent
subsequence. However, the limit must satisfy the differentiated equation and hence
is unique.

To prove (25), we note that

du*
da

du*
diti i

= 0
(-0

since

and

/»2 T

¥{t) = I K(t — s)/(2a cos s + u*(s))
Ztt J o

ds

f = 0.OCx) 1 ( = o

We compute

dG
dwi

dG
da

dF
da

1 r2T
= x0 — — / /'(2a* cos t)2 cos2 t dt, (26)

n-«t(0);<-0 -T Jo

* "oa*   
a = a* ; w i = it) j (0) ; < =0 ^l(O)

i r2r
— Vo + w~ /'(2a* cos t)2 cos t sin t dt = 0.

i = o*;a>i = a)i(0);e=0 ^7T Jq

Since (26) is not zero by assumption and a*cd„/u>1(0) ̂  0, we have that (25) is also not
zero. By the implicit function theorem for small e there exist unique functions a>, = wi(e)
and a = a(e) such that

F(a(e) , , e) = 0,

G(a(e), 6jj(e), e) = 0,

and a(0) = a*. This completes the proof of the theorem.
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