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HEAVY ROTATING STRING IN A CASING*

by CHIEN-HENG WTJf (University of Minnesota)

1. Introduction. It is well known in the linear theory that a heavy string with
one endpoint free has eigenfunctions of lateral displacement only at certain eigen-
velocities of rotation w„ which form a discrete spectrum. Kolodner [1] has shown that
according to the more accurate non-linear theory, a string can rotate at any velocity
co > co, , and that for each co in the range to„ < u < co„+1 there are exactly n distinct
modes of rotational displacement. It has been found in [2] that even if the linear equation
is used, a string can still rotate at any velocity co > co, if it is contained in a casing of
small radius. Furthermore, for each co in the range co„ < « < co„+1 there are exactly n
distinct modes of rotation. The essential feature of this phenomenon is that the string
is subjected to a constraint condition giving rise to a moving boundary. This result
will be demonstrated by the two theorems proved in this paper.

2. Formulation. Consider the rotation of a string of length L with its upper end
(;x = L) fixed and lower end (x = 0) free. If we let y(x) be the steady state solution
for lateral displacement, then

Tx(pg xdi)+ p"u = 0

is the linearized governing equation in which p is the density per unit length of the
string and w the angular velocity. Introducing £ = x/L, rj = y/L, O2 = co~L/g we get

!(*!) + <i>

This equation has a singularity at £ = 0. Therefore, appropriate boundary conditions
for the eigenvalue problem are

77(1) = 0, 77(0) finite (2)

The eigenvelocities and mode shapes corresponding to equations (1) and (2) are
and J0(2Q„£1/2) where 2Q„ is the nth zero of J0(Z).

If the string is constrained to rotate in a casing of dimensionless radius r/L = 5 <5C 1,
then the boundary conditions (2) become

*?(!) = o, m\<a«i (0 < £ < 1) (3)
It will be shown that equations (1) and (3) have nontrivial solutions for any U > 0, .
The existence of such solutions may easily be seen from the following auxiliary initial
value problem.

We consider the function m(£, a, n) on a real £ interval, 7{ = (£; a < £ < b < <*>),
0 < a < 1, and a real n interval I„ = (m; < ju < M < °°) such that
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(£, w(£, a, fj), u'(£, a, y)) e D, 11(,' = |j^ ,

dtu'Y + MM = 0, (4)

u(a, a, n) = 8, (5)

u'(a, a, y) — 0. (6)

We now state the following theorem for the above defined initial value problem:

Theorem 1. (1) w(£, a, /x) exists, is unique, and depends continuously on a and ix.
(2) w(£, a, n) has an infinite number of isolated zeros Zn(a, ju), a < Zx <

Z2 < • ■ ■ < Zn and lim„_„ ZJa, n) = co; furthermore, ZJa, fi) is a monotonically
decreasing function of n for constant a.

(3) If we define nJa) to be such that ZJa, nja)) = 1, then there are an infinite
number of n„ , ^(a) < ju2(a) < • • ■ < nja) and lim»^0 nja) = ill , M«(o) = ro-

(4) w„(£, a) = w(£, a, nn(a)) has exactly n zeros in the interval [a, 1] and
max |w„(£, a)| = un(a, a) = <5.

(5) The ;u„ (a) are differentiable functions of a and dp. J da > 0; furthermore, lim„
dp J da = °°.
Proof: (1) Existence and uniqueness of u(£, a, fx).

Rewrite equation (4) as

u" = -i (u' + im) = /($, u, u\ /»). (7)

Let D„ be the domain of (£, u, u', n) space

D„ : (£, u, u') e D y t Ip ;

then / is continuous on and

|/(|, u, u', n) - /(£, Ui , < , n)\

< r (|w — Wj| + |u' — u[\) < — (|m — Wi| + |u' — m[|)

since jx > > 1. Thus / satisfies a Lipschitz condition in u and u' uniformly with
respect to n on D„ and Part (1) of Theorem 1 follows from [3].

(2) Zeros of w(£, a, n):
A zero of a nontrivial solution of equation (4) is isolated. Indeed, let the solution u

vanish at £0 • Then u'(tj0) 9* 0, for otherwise u" and hence uk) vanish at £0 for all k
and u = 0. This proves that £0 is an isolated zero.

The unique solution of equations (4, 5, 6) can be expressed explicitly in terms of
Bessel functions

«(£, a, M) = [Wa^YoW?") - F1(2M1/2o1/2) WnW'Vrt. (8)

Since the Bessel functions have an infinite number of zeros, it is clear that u has an
infinite number of zeros at £ = ZJa, n) and limn_oo Zn(a, /x) = <».

(3) ZJa, y) decreases monotonically with y for constant a.
If we let

A(|, a, M) = Ji(2/u1/2aI/2) F0(2yuI/2£1/2) - F1(2/11/2o1/2) J„(2MVY/2)
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then, by definition of Zn and equation (11), Aa(Z„ , n) = A(Z„ , a, n) = 0. Since w(£, a, p)
depends continuously on its arguments so does Aa(Zn , n). We may now formally dif-
ferentiate Aa(Zn, ju) to get

(_ dA„ / 3A„ Zn
\ 3/J / a dn / <dZn n

Jn(2„U2Z'n/2)
. J1(2MI/2aI/2).

2
- 1

For n large enough, we may approximate Bessel functions by the first term of their
asymptotic expansions and the zeros of equation (8) are approximately

o 1/2 _.i/2 ,2n 1a H 7,—

thus,

Jo(2/i1/2Q
U1(2M1/2a1/2)

1/4

< 1

since Z„ > a. It follows that (dZn/d^)a < 0 for n large. However, since Z„ are the roots
of A(£, a, fi) = 0, (dZn/dn)a can never vanish unless ju = <». Thus, (dZn/dn)a < 0 must
hold for all values of /u. This proves that Z„(a, n) is a monotonically decreasing function
of n for constant a.

(4) n„(a) and lima_0 M»(a) = K , lim„, /j„(a) = °° :
Since there are an infinite number of Zn(a, fi), it is clear that an infinite number

of with Zn(a, Mn(o)) — 1 (°r A(l, a, nn{a)) = 0) exist. Furthermore, since Z1(a, n) <
Z2(a, n) < • ■ • < Zn{a, m) and (dZJdn)a < 0, the ji„(a) must have the relation ni(a) <
n2(a) < ■ ■ ■ < n„(a)

To determine the limits of n„(a) as a approaches zero, we note that n„(a) satisfies
A(l, a, ju„(a)) = 0. Therefore, if ju° = limo^0 fi»(a), we must have

lim A(1, a, n„(a)) = J0(2ju°1/2) = 0;
a—»0

thus,

lim Hn(a) = •
a—»0

Similarly, if n\ = lim,^ /x„(a), we must have

lim A(1, a, nJa)) = — l/ir(^)1/2 = 0;
o—»1

thus,

lim M„(a) = .
a—»1

(5) a) = u(|, a, M„(a)) has n zeros in [a, 1] and max |m„(£, a)| = <5.
By definition, nn(a) satisfies Zn{a, n„(a)) = 1. It is clear that «„(£, a) has exactly n

zeros in the interval [a, 1], These zeros are Zni(a) = Zi(a, \u„(a)) where i = 1, 2, 3, • • • , n.
Explicitly:

«.({,«) = [<WV/2)F0(2,£/¥") - F 1(2lui/2a1/2)Jr„(2^i/2^1/2)]^i/2a1/V6.

This solution holds only for a > 0. When a = 0 the solution is 5J0(2Qn£1/2).
Comparing u„(£, a) with the equality
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Y0(z)J1(z) - J0(z)Y](z) = 2/tvz,

we find that w„(£, a) = 8 if and only if £ = a. It follows that «„(£, a) < 8 for a < £ < 1
since m„(1, a) = 0.

(6) ju„(a) are differentiable functions of a and dn„/da > 0.
By definition of we have A,(a, M„(a)) = A(l, a, m»(«)) = 0. Formally differ-

entiating A,(a, ju„(a)), we get

d)xn _ 3A, /dA, _ v
da da / dfin a /

J,(2My2a*/2)
. JM/2) J 1

Since nn and a must satisfy the equation A(l, a, ju„(a)) = 0, the denominator of the
last equation never vanishes and hence dn„/da exists. To prove dnn/da > 0, we use
the same argument as in the proof of part (2). For large enough, equation
A(l, a, M»(a)) = 0 may be approximated by the first term of its asymptotic expansion
to give

. » 1/2 _ . rv 1/2 _ 1/2 i 2n 1-Vn — a H  — 7r

thus,

i Jo{2,Y2)

1/4

> 1

since a < 1. It follows that dnjda > 0 for /xn large. However, d^Jda can never vanish
since n„ > £l\ ^ 0. Thus dnn/da > 0 for all a. Furthermore, lim„^, d^Jda = <» since
lim0_i m»(o) = 00 from part (3). We have thus completed the proof of part (5). The
result of part (5), Theorem 1, is shown graphically in Fig. 1.

Theorem 2. The function tj(£) on the interval (0, 1) satisfying

(£„')' + 0%, = 0 LeJJft;,© «) (9)
id) = 0, |,©| < 8J
v(.q = 5 (io)

has for any Q„ < < Qn+l exactly n nontrivial solutions Vi , V2 , • • • , >7* such that

1000

Fig. 1.
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/,-\ f5 0 < $ < ani /• 1 o \
Vi(Q = \ (i = 1, 2, ••• ,n)

U,(£, a„<) ani < | < 1
where aBi(0) are determined by Q2 = n,(a„,-(0)). The solution ??<(£) has exactly i isolated
zeros.
Proof: From Theorem 1, the ixn(a) are monotonically increasing functions of a with
the properties that Hi(a) < 112(a) < ■ ■ ■ and limo_0 pn(a) = • Thus for Qn < 0 < fl„+1 ,
there are n values of a, a„i(0) > a„2(Q) > • • • > a„„(0) > 0, such that £2" = At,(a„,(0)),
i = 1, 2, • • • , 71. Corresponding to each a„,- there is a «<(£, ani) defined in a„< < £ < 1
satisfying equation (9) and the boundary conditions w,(ani , ani) = S and u,-( 1, a„.) = 0;
furthermore, u'(ani , ani) = 0 and max o„,)| = 5. Therefore

/>n 0 < $ < ani , 0 ,i?.-© = ^ _ 0 = 1, 2, • • • , n)
'«<(£, ant) ani < £ < 1

are the solutions of equations (9) and (10). Since «,■(£, a„,-) has exactly i isolated zeros,
77i(£) also has i isolated zeros.

Let us take for example ft3 < fi < , Fig. 1. There are three possible values for a,
i.e., a31(0), a32(fi) and a33(£2). The three possible modes, one corresponding to each
value of a, are

„,.({) = |5 0<t<a3l (i = 1,2,3).

«<(£, a3.) a3i < £ < 1
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