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B — (M2 - 1)1/2

Gmr —See Eq. (17)
k ■—uL/U, reduced frequency
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M —Mach number
m —Streamwise mode number
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p —Aerodynamic Pressure
P —(p/cos ?id)e~"°', pressure amplitude
Pm —Pressure amplitude of with mode
Q.n,  ft Pm(x)ir{x) dx/filj2
R —Radius of cylinder
r —Radial coordinate; also streamwise mode number
s —Laplace transform variable
t —Time
U —Free-stream velocity
W —Radial deflection amplitude
w —W(x) cos nd e'"', radial deflection
x —Streamwise coordinate
s" — (R/L)(M2(s + ikf - s2)1/2
8 —Angular polar coordinate
P —Density
$ —(<p/cos nd)e~'at, velocity potential amplitude
<p —Velocity potential
<pm{x)—Streamwise mode shape
u> ■—Frequency

Superscripts
* ■—Laplace transform
' —differentiation
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Abstract. The present paper presents a mathematical and numerical solution for the
problem of determining the aerodynamic forces on a harmonically oscillating cylindrical
shell at supersonic speeds within the framework of the classical, linearized, potential
flow theory. The method of solution is given in detail and extensive numerical results
are presented to indicate the nature of the aerodynamic forces. Comparisons of the
present results are made with those of simpler, but more approximate theories, such
as the quasi-steady, two-dimensional theory and a (generalized) "slender-body" theory,
to indicate where these may be used with confidence.

1. Introduction. The determination of the aerodynamic forces on an oscillating
cylindrical shell of finite length due to an external flow is a prerequisite for the study
of its aeroelastic stability. (See Figure 1.) Such a determination is the subject of the
present paper. This problem has been previously considered by Holt and Strack [1] and,
also, in a more recent report by Stearman [2], The major assumptions in the mathematical
model are that the flow is inviscid, irrotational (i.e., a velocity potential exists), super-
sonic, and that linearization is permissible. In both references [1] and [2] a formal mathe-
matical solution is obtained in terms of the Laplace transform of the velocity potential.
The use of the Laplace transformation (in the streamwise coordinate) had been used
previously by Randall [3] in his investigation of the steady flow about quasi-cylindrical
geometries and references [1] and [2] make use of his results in their investigation of the
unsteady flow problem. The unsteady problem is inherently more difficult than the
steady one, of course, and thus the authors of references [1] and [2] have made further
approximations in an effort to obtain useful results. The approximation used by Holt
and Strack is rather severe and essentially consists of, first, the reduction to steady flow
from unsteady flow, and, secondly, an expansion about the limiting case of two-
dimensional flow (i.e., an expansion in terms of the length-to-radius ratio of the cylinder).
Only the first two terms in the expansion series are retained, the first of which is the
well-known Ackeret result and the second the first-order correction to that result.
In a more recent paper, Dzygadlo [4] has carried out a similar process in a more systematic
fashion retaining the first three terms in the expansion and including the unsteady effects.
He has noted that this expansion process is not rapidly convergent for typical flow and
cylinder parameters. Most recently, Stearman has identified the inverse Laplace trans-
form of the velocity potential "influence function" of the unsteady problem in terms
of that of the steady problem, which has been computed and tabulated by Randall.
In principle, all that is required then is a sufficiently accurate tabulation of the influence
function for steady flow and an integration to compute aerodynamic pressure or two
integrations to compute aerodynamic generalized forces. However, these integrations
are rather awkward and it turns out that one needs the derivative of the steady flow
influence function for the unsteady flow problem as well. For these reasons Stearman
has suggested an alternative method whereby the Laplace transform of the influence
function is approximated by a simpler function whose inverse can be determined ana-
lytically and which permits the integrations to be performed more simply. The approxi-
mation of the Laplace transform is made in a manner suggested by Luke [5]. The method
would seem feasible although a considerable amount of numerical work is still required
and the method does require a further approximation beyond the original problem
formulation. To date, no results for the aerodynamic forces have been published. Finally,
it is noted that the similar problem of a supersonic flow inside a cylindrical shell has
been studied in reference [6] and a formal solution effected by a (complex) Fourier
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series approach. No quantitative evaluation is made although the authors claim their
method is well-suited to digital computation. The interior flow problem is presently
being pursued using an approach analogous to that used here for the exterior
flow problem.

In the present paper a simpler method is proposed which is the logical extension
to the unsteady problem of the method used by Randall for the steady problem with
one major innovation. This is to reduce the problem analytically to a single integration
(in terms of the Laplace transformation variable) for the aerodynamic generalized
forces. The integration is performed using standard complex variable techniques anal-
ogous to those employed by Randall. Within the framework of the original problem
formulation, the solution is mathematically exact.

A portion of the extensive numerical results for the aerodynamic generalized forces
which have been obtained to date by this method is presented. The physical significance
of these results is discussed, particularly in relation to the aeroelastic stability of a
cylindrical shell of finite length.

2. Problem formulation. A solution to the equation of linearized, unsteady, po-
tential flow,

W § + 2at ox at ox = o, (!)

is sought (for M > 1) subject to the boundary condition

cos ndc""' for 0 < x < L,dip
dr

U + io>W
OX

(2)
= 0 for x < 0,

and also satisfying appropriate conditions at infinity. In the above, <p is the velocity
potential and

w{x, 9, t) = W(x) cos nde'°" (3)

is the radial deflection of the midplane of the (thin) cylinder. The aerodynamic pressure
on the cylinder may be determined from the well-known Bernoulli equation

V = ~P
l TT dv

dt dx (4)

Consistent with the assumed cylinder deflection is a velocity potential of the form

<p = $(x, r) cos nde""'. (5)

Substitution of Eq. (5) into Eqs. (1) and (2) gives

d2$ d2$ 13$ n
dx2 dr2 r dr r2 -&)

2. I o- TT , TT2 d <J>— CO $ + 2iloU — + 6 ——2dx dx 0, (6)

3$ dW~ = U — + toW for 0 < x < L,
dr r=K dx ^

= 0 for x < 0.

Following Randall's solution for the steady flow problem (see Holt and Strack and also
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Stearman for formulations of the unsteady problem) Eq. (6) is solved by utilizing a
Laplace transform with respect to the streamwise variable, x, i.e.,

$*(s, r) = f 4>(:r, r)e~" dx. (8)
J 0

Eqs. (G) and (7) now become, respectively,

s2$* + ~ ~ -I - (^)[-«2 + 2iuUs + UV]$* = 0 (9)dr r dr r \a /

and

= [Us + iu]W*. (10)dr

In deriving the above, explicit use has been made of the conditions $ = 0, d'i/dx = 0.
w = 0 for x < 0.

The solution to Eq. (9) subject to the boundary condition, Eq. (10), and satisfying
the condition of "finiteness at infinity"* is

$*(«, r) = RU (s + ik)W*, (11)

where f2 = (R/L)2[M2(s + ik)2 — s2] and s = sL, k = uL/U.
Utilizing the convolution and inversion theorems, one has

•-" f .(* [h *]& + *)wm *• (12)

where the bars over x and s have been dropped. From Eqs. (4) and (12) the pressure
amplitude (P = (p/cos n0)e~"*') may be computed as

p - -f (I+«)* L
= ~(f )PU2 (13)

•{/.* [is^e + <*]"■<*" • ™ "£ + ™ f"M + (s + *) p.mJj

where

Fn(x) = ~. [' c" ds.
2m J-ia, fKn({)

Eq. (12) or (13) constitutes a formal solution to the problem. Equivalent formal solutions
have been obtained by Holt and Strack (Eq. (12)) and also Stearman (Eq. (13)). In
deriving Eq. (13) from Eq. (12) some care must be exercised since at x = 0, Fn, F'n and F"
have the behavior of a step function, delta function and delta prime (doublet) function,
respectively. This difficulty may be overcome by replacing x in Eq.(12) by x — e where e

*More precisely Kn{^r/R) is an analytic function which satisfies the radiation condition in the inter-
vals i > s > Si and s2 > s > —too and the finiteness condition in the interval si > s > st, where
si = —iMk/(M + 1) and «2 = —iMk/(M — 1).
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is a small positive parameter, performing the derivation of Eq. (13) and taking the
limit as e —-> 0. Also note that Fn(x) = 0 for x < 0 and the more general function

q (x r) = JL f Kn(^r/R)r) ~ 2«iK(x) ds

is zero for x < B{r — R) as is to be expected on physical grounds since the uniform
free-stream flow must be undisturbed before the first Mach line, x — B(r — R) =0.
To see this mathematically, let the above integral be evaluated by contour integration.
For large s,

K^r/R)
K a) exp {s[x — B(r — /?)]}.

When x < B(r — R) the contour is closed in the right half s-plane and since there are
no poles of K'J£) in the right half-plane the integral is zero.

The essential practical problem is, of course, the evaluation of the integrals arising
in Eq. (13). For this, one may make use of Randall's results for the steady flow problem
to evaluate (numerically) the integrals over s. It is pertinent to point out, however,
that having done so, another quadrature over £ is required to determine P. Also, in
most aeroelastic applications one is concerned with certain weighted integrals (over x)
of P so yet another integration is required. These weighted integrals of the aerodynamic
pressure are the so-called aerodynamic generalized forces. That is, if

(14)

the (non-dimensional) aerodynamic generalized force, Qrnr, is

[ Pm(x)\pr(x)
Jo

dx
Q,r = W  , (15)

where Pm is the aerodynamic pressure due to a deflection

W( x) , ,

A considerable economy of effort may be accomplished by dealing directly with Qmr
and bypassing the calculation of P (or $). In order to do this most efficiently, the inte-
grations over £ and x are carried out first and that over s is left to the end. After some
algebraic manipulation one obtains from Eqs. (13) and (15),

O _ ( R) 1 r r r(s) ds, (16)

where
f1 T r1

di)Gmr(s) = (s + ik)2 e"j^ \pm{x - v)tr(x) dx

+ (s + 2ik) 4'm(x)4/Xx) dx + ir(x) dx. (17)

Note that, in general, the quadratures required in Eq. (17) may be performed with
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relative ease for a known cylinder deflection. Often it will be possible to accomplish
them analytically. When this is the case the problem is reduced to a single integration
over s (Eq. (16)). This latter integration may be performed by standard mathematical
techniques using the theory of complex variables. A similar integration has been per-
formed by Randall for the steady flow case to compute the velocity potential influence
function. The present calculation may be considered a generalization of his result.
The details are given in Appendix A.

Finally, we remark that if the aerodynamic pressure is desired it may be computed
from

P = pU2 Z T,AmQmrUx), (18)
to r

where

£ - E A.K
is the cylinder deflection. Eq. (18) is derived from the fact that Qmr may be considered
the (generalized) Fourier coefficient of the aerodynamic pressure (Eq. (15)). For Eq. (18)
to hold the functions <pm(x) must form an orthogonal complete set over 0 < x < 1.
If the are the natural vibration modes of the cylinder this will be the case, for example.

Before leaving the problem formulation, one interesting and useful analytical result
should be mentioned. It can be shown that

Qmr = (-ir+r<2,~ (19)

under certain mild restrictions on \pm . These are that
(i) the \f/m be orthogonal, i.e.,

/ ipm^r dx = 0 if m r,
Jo

(ii) the \//m be (alternatingly) symmetrical and antisymmetrical, i.e.,

K(x) = (-1)™+Vm(l - x),

(iii) vUO) = \Am(l) = 0.
Again these conditions will be satisfied by the natural modes of a cylinder if the ends
are restrained against radial deflection. A short derivation of Eq. (19) follows. From
Eq. (16), Eq. (19) will hold if

Gmr = (-l)-+rGrm. (20)

Eq. (20) will hold if each term comprising Gmr (see Eq. (17)) satisfies it. From condition
(i) this is true of the second term of Gmr. By an integration by parts and use of conditions
(ii) and (iii) this is true of the third term of Gmr , i.e.,

f^irdx= *»> dx■J o dx J o dx

If m + r is even, then one is integrating an even function times an odd and thus

J o tiX J o W'X
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Conversely if m + r is odd, then one is integrating an odd times an odd or an even times
an even function and

I d~t+'dx= ~l °-
Finally, consider the first term comprising Gmr . It will satisfy Eq. (20) if

f ipm(x - v)4>r(x) dx = (-l)"+r f ir(x - dx.
J 71 J J)

Let x — t; = £, then

[ im{x - v)ir(x) dx — — f + v) d£.
J JJ *> 0

In view of (ii), the above integral becomes

_(_!)»- f 1 tJl + $)*r(l + £ - ,) dt
J 0

Let f = 1 + £, then the integral equals

(-l)"+r /%.(r)Mi-n)dt, q.e.d.
J V

A proof of this result under considerably more restrictive conditions has been given
by Miles [7].

Finally it is noted that, for steady flow, the Qmr obey a similarity law

BQmr = BQmr(BR/L, n, to, r). (21)

This is analogous to the usual result for lift or moment for wings.
3. Numerical results. Numerical results have been obtained for a particular family

of cylindrical deflections

\pm(x) — sin mirx, m = 1,2, • • • ,

for various values of the cylinder and flow parameters. It is noted that the generalized
aerodynamic forces are functions of six parameters

Qmr = Qmr(M, k, R/L, 71, TO, r) .

Certain limiting cases are of special interest as well as being useful and these are briefly
considered here before passing onto the numerical results.

(i) R/L —* oo, two-dimensional, planar flow. This limiting case needs no further
elaboration as it is well known.

(ii) R/L -> 0, « ^ 0, "Slender body" flow. From Eqs. (11) and (13), as R/L —> 0,
I —> 0, and Kn(^)/tK^) —> — 1 /n* and thus

P-^fn L T + ikax

2 W
~ (22)

*See Miles [8] for further terms in this asymptotic representation of K„(^)/^K'n(^).
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and from Eq. (15)

Qmr -> (|) ~ {( Kir dx + 2ik j ' Ki, dx - k2 J dxJ. (23)

Eqs. (22) and (23) will be taken as the definitions of P.i.nder body and Qmr nleader bod7 .
(There is a slender body limit for n = 0 also, but it does not have the simple form of
Eq. (22) or (23)).

(iii) For steady flow, k — 0, R/L may be replaced by BR/L in (i) and (ii), recall
Eq. (21). Thus n, m and r are fixed as the limit is taken, but not M. As a practical matter
the "slender body" result is the limit as BR/L —> 0 even for k 9^ 0 as long as k < 1 say.

PROFILE OF CYLINDER

THE CASE SHOWN
IS rn = 2, n = 2

CROSS-SECTION OF CYLINDER
Fig. 1. Cylinder Geometry.
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(iv) For M » 1, the two-dimensional limit may be further simplified to the well-
known quasi-steady result

P = PU2
(M2 - 1)1/2

Again from Eq. (15)

d(W/L) , M2 - 2 ., W
dx + M2 - 1 L (24)

i r1 m2 — 2 rl
Qmr = 2 _ 1/2 J 4/m4'r d>X +   -Q3/2 J (25)

Note that the "slender-body" limit is inherently quasi-steady (Eq. (22) or (23)), i.e., a
finite power series in co or k.

(v) As n —> oo the "slender body" theory is also the appropriate limit* and, on
physical grounds, it may be argued that it is the appropriate limit whenever

RR(m or r)
Ln

where the larger of the two integers, m or r, is to be used. The parameter on the left
is the ratio of circumferential to streamwise wavelength (within a constant of t) modified
by B by analogy to the similarity variable for steady flow. It is to be emphasized that
this single parameter characterizes the regime in which the "slender body" limit is
accurate and that its "derivation" is based on physical reasoning. For fixed m, r, n
and k = 0, the parameter reduces to a known mathematical result (ii) and (iii) and no
numerical results obtained to date have invalidated its use for defining the limit of
applicability of the "slender body" approximation.

A few typical numerical results will be now presented. More extensive numerical
results will be published elsewhere. First consider Fig. 2. Here Qns is plotted versus

 SLENDER BODY THEORY * R/L = 1.0
— TWO-DIMENSIONAL THEORY * -5

.25

.1
-1.0

Fig. 2. Generalized Aerodynamic Force vs. Circumferential Mode Number.

-> -1 /n as n
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n for M = 21/2, k = 0 and several 11/L. (Recall the similarity for steady flow, Eq. (21);
the results shown may be extended to other R/L and M for the same BR/L.) The
solid lines are the "slender body" limits. Of course, n can take on only integer values;
the solid lines are used to make the comparison between the "exact" results and the
"slender body" limit easier. As may be seen for each R/L the "exact" results asymp-
totically approach the "slender body" limit for sufficiently large n. The limit is reached
for a smaller value of n as R/L decreases. The two-dimensional limit is that QUb = 0.
It may be seen that this limit is being approached for small n (particularly n = 0)
as R/L increases. Similar results have been obtained for Q22r , Q:s3R , etc. As is to be
expected, the shorter streamwise wavelength (larger m/2L) delays the approach to
the "slender body" limit to higher n for a given R/L. A coupling generalized force Q12s
is shown in Fig. 3. For small n the "exact" results are approximately equal to the two-
dimensional limit (for QV2r , this limit is non-zero) for the larger R/L. For all R/L, Q12s
falls to zero, the "slender body" limit, as n increases. The drop to zero occurs for smaller
n as R/L decreases as is to be expected.

Next, unsteady flow results are considered. The effect of k ^ 0 on the real parts
of the generalized forces is usually small for k < 1, and therefore the imaginary parts
are emphasized. In Fig. 4, Qllr is plotted* versus n for several R/L and for k = 1.0.
As n increases, Qlu falls to zero, which is the "slender body" limit. The effect of R/L
is qualitatively the same as for QIlx . The two-dimensional limit is not known in a
simple analytical form for k ^ 0, except for M » 1, and thus the small n, large R/L
(i.e., two-dimensional) limit has not been determined.

1.4

1.2

i.o

.8
QI2

R

.6

.4

.2

SLENDER BODY THEORY
: TWO-DIMENSIONAL
THEORY

R/L = 1.0
.5
.25
. I

M = J~2~
k = 0

-i i i 1 i I i_ 1
0 I 23456789 10

n
Fig. 3. Generalized Aerodynamic Force vs. Circumferential Mode Number.

*Qmr, m = 1, • • • , 4, r = \, ■ ■ ■ ,4 have been computed for several k for various R/L and n = 0—»9.
Only selected results are presented here for the sake of brevity.
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1.0 (—
 -SLENDER BODY THEORY 4 R/L = 1.0

• .5
.25

.6
On

.2

M =/2~
k = i.o

-* ♦ 
01 23456789 10

n
Fig. 4. Generalized Aerodynamic Force vs. Circumferential Mode Number.

The last two figures are concerned with Qni at low supersonic Mach numbers and
various R/L. It is well known that, for two-dimensional flow over a flat plate at suffi-
ciently low Mach number, Qu, can become negative. When QIU is less than zero, the
m = 1 mode can act as a single-degree-of-freedom oscillator with negative damping,
and the system may be unstable. A plot of Qn versus k is shown in Fig. 5 for R/L = 1.0,
n = 0 and several M's. For sufficiently large M, Ql lt is always positive. For M < 1.3,

M = i.2

M = 1.3

  COMPLETE THEORY
 TWO DIMENSIONAL, QUASI-STEADY

THEORY
n =0
R/L= 1.0

Fig. 5. Generalized Aerodynamic Force vs. Reduced Frequency.
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QiU is negative over a portion of the range of reduced frequency. Similar results have
been obtained for other values of R/L. As R/L decreases the highest Mach number
for which Q1U can be negative also decreases. A plot of the locus of such Mach numbers
is shown in Fig. 6. For 1 < M < Mloous single-degree-of-freedom flutter is possible
for n = 0. A similar curve for n = 1 is also shown. Note that the region for which single
degree-of-freedom flutter is possible is much smaller for n = 1 than for n = 0. Apparently
the three-dimensionality of the flow tends to suppress "negative aerodynamic damping"
(i.e., Qn, < 0). The trend with n is evident.

n = o
n =

SINGLE DEGREE OF
FREEDOM FLUTTER
POSSIBLE

Fig. 6. Mach Number vs. Length to Radius Ratio.

4. Qualitative discussion of the aeroelastic stability of a cylindrical shell of finite
length. It is, of course, very desirable to perform a systematic stability investigation
of a cylindrical shell using the present aerodynamic forces. However, certain important
qualitative features of the stability problem may be determined without making detailed
stability calculations. One of these was discussed in the previous section where the
Mach number, length-to-radius ratio domain was determined wherein single-degree-
of-freedom flutter is possible. By analogy to the flat plate problem and the agreement
found herein between the "exact" aerodynamic theory and two-dimensional quasi-
steady theory for small n, large m, and moderate to large R/L; one may expect that
the classical "coalescence" type of flutter may also occur for cylindrical shells for the
afore-mentioned range of geometrical, flow, and modal parameters. It is reasonable
to ask next if there is a characteristic type of instability associated with the parameter
range wherein the "slender body" type of aerodynamic approximation is valid. Consider
Eq. (22) for the aerodynamic pressure

P slender body P ^ j 2
d2W,0..dW ,

+ 2lk lu~kW
Li U>v

The last term on the right-hand side is of the virtual mass type and will not be important
for typical values of air/shell mass ratio. It cannot lead to an instability. The second
term provides positive damping and cannot lead to an instability. It too will not be
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of great importance for most aeronautical applications. However, the first term is the
aerodynamic analogue to an in-plane axial compressive force and can lead to a "buckling"
or "divergence" type of instability. (The aerodynamic damping term will modify this
slightly but not greatly.) A "flutter" or "oscillatory" type of instability may also occur
but only subsequent to the occurrence of aerodynamic buckling, i.e., at higher velocities.
Detailed stability studies using "slender body" theory will be published elsewhere.
There is an interesting analogy between the above problem and that of a low aspect
ratio flat plate with free side edges. The low aspect ratio membrane problem [9] should
also be mentioned though it has certain special features which lead to somewhat patho-
logical stability behavior. Finally, the traveling wave flutter of shells of large L/R for
the n = 0 mode is yet another distinct type of instability [8; 10].

To fully investigate the aeroelastic stability of a cylindrical shell all of the above
types of instability need to be considered. All can be considered with the present aero-
dynamic theory combined with an appropriate shell theory. Undoubtedly, simplifications
are possible for certain combinations of M, L/R and n, some of which have been discussed
above. The use of the present aerodynamic theory in a systematic stability investigation
will permit an evaluation of the accuracy of these simplified theories as well as perhaps
suggest others.

5. Conclusions. A method has been developed to compute the generalized aero-
dynamic forces on an harmonically oscillating cylindrical shell within the framework
of classical, linearized, potential flow theory*. The present method is thought to be
more accurate and more efficient than previously suggested methods and is the only
one to date which has been carried through to the point of obtaining quantitative
results. Quantitative results are shown in sufficient number to demonstrate the nature
of aerodynamic forces and various limiting cases have been identified where the aero-
dynamic forces take on a simpler form. The most useful of these limiting cases appears
to be the "slender body" limit which is the limit as

BRm
Ln

In particular it is the appropriate limit, for fixed shell and flow parameters, as the
circumferential mode number becomes large.

A brief qualitative discussion of the types of instability to be expected for a cylindrical
shell has been given based on the nature of aerodynamic forces. The region where
single-degree-of-freedom flutter is possible has been identified and it has been pointed
out that in the "slender body" limit an "aerodynamic buckling" type of instability
can occur.

Certain extensions of the present analysis may prove desirable. Two of these are:
(i) The extension to subsonic flow. The downstream influence may make the physical

model less realistic for subsonic flow, however.
(ii) The extension to other than simple harmonic motion, in particular to unstable

motion.
Both of these would appear relatively straightforward. For (i) the use of a Fourier

rather than a Laplace transformation integration variable is necessary. These extensions
are currently under investigation.

*The flow is taken to be supersonic.
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Appendix A

Evaluation of the Aerodynamic Integral

Here the evaluation of the integral (Eq. (16))

is considered. The evaluation will be accomplished by contour integration in the
(complex) s-plane.

The relation between and s,

f = (R/L)[M'\s + ik)2 - s2]1/2, (A-2)

is made unique by placing a branch line between s = Sj = — iMk/(M + 1) and s = s:, =
—iMk/(M - 1).

(For steady flow, k = 0, Eq. (A-2) reduces to

r = (r/l)(m2 - iy/2s

and this branch line is no longer required.)
In addition one must select the branch of the function i£„(f). The branch line is

taken along the negative real f-axis. In the s-plane this forms a T-cut between s = ,
s — s2 and

iM'lk
S = S„ = ' s = - CO + So

(see Fig. A.l). Therefore the contour of integration is chosen as shown in Fig. A.l.
In the usual manner the radius of the semi-circle is allowed to approach infinity and
it may be shown that the contribution to the line integral along the arc at infinity is zero.
Thus,

— (R/L) C A"„(f) si > _ /n/j\ y* ^n(f;)G'mr(S,) 
2« fxi(r) G""(sj s ( / } r wmzmw/d*) \f, fi

• ~^/L) { f" K"(re 'T). Gmr ds + f" (-ir) ■ ■ ■ ds + f" (0) ■■■ ds (A-3)
2m ll-~+,»re—K:£re—') J.. ■>*,

+
/«! o /» — 03 + S o(0) • • • ds + J (iir) • ■ • ds + I (iii) • ■ ■ dsj,

where r is the modulus and ( ) the argument of f along the appropriate branch and
where f, are the zeros of K'n and the corresponding s,- are determined by solving Eq. (A-2):

ilcM2 [f,(L/R)\M2 - 1) - k2M2]1/2
S' M2 - 1 + M2 - 1

The square root is chosen so that s,- + ikM2/(M2 — 1) and f,- are of the same sign.
Implicit in the above is the assumption that Gmr does not contribute to the sum of the
residues. This would appear to be the usual case. If Gmr does contribute, it must be
accounted for in summing the residues. For the example problem considered in the
text, Gmr does have poles, however the residues at these poles are zero, i.e., there are
no first-order poles. Randall has tabulated the f, for n = 1, ••• ,10 (see
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S-PLANE

Fig. A.l. Integration Contour.

Table 2, reference [3]). Quoting Randall, "The general result, for the zeros of K'„(£),
is that K'n{$) has all its zeros to the left of the imaginary axis and the number of zeros
is the nearest even integer to n + §. The zeros are symmetrically placed about the
real (f)-axis • • • Also see Watson [11].

Eq. (A-3) may be further simplified to bring it into a form more convenient for
computation. Consider first the summation representing the contribution of the residues.

■(f)?(d/dMKwm/ds) |r_r,

Now

thus

(f^(D) = iK'n' + K'n

— (!~K'} — = l~ — K" 4- K' — = — —i K" -4- K' —
dfn) ds f ds " + " ds 2 ds " + " cfe
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, s = Sj , it equals

(!)'
[s,(A/2 - 1) + ikM2]K'„'

but

at

K'n'if) = -~ + (1 + n/f)KnCO;

it equals

(i + n7r»f,)-
Therefore

(R) V g.(f,-)G.f(8,-) = v  GMt- ,A ^
W ^ (d/dmKWm/ds) I r_ f, (R/L) ^ k(Af - 1) + ikM2][f? + n21'

3 = 8 i

Now consider the integrals; these may be combined as follows:

ds~(R/L)
2 iri

+

Qr,

f" G f KH(re~") _ Kn(re'l "I
J-"Ire-'A^Cre"") reiT K'Jre*') J

p [" g,(*Q A»(r)] p I" K.(re~")
L \~rei*K'„(reiT) rK'Jr) J + J,„ tlmrlre-"Ki(»r<') rK'n(r) J

*»(r) dsf. (A-5)

Thus the final form of Q„r used for computational purposes is

= _±L y - GU»,-)f? -(R./L)
' (R/L) r [s;(M2 - 1) + ikAniti + n2] 2xt

+

/p I" KJre~") KJre'*) 1
\J_ Lre~"A't(re~") re''A^re*x) J

f r [" KJre") _ _A„(r)1 f"
J., "ire'-KXre") rK'Jr), ^ + L

rfs (A-6)

KJre~") K_M
reiTK'Jreix) rK'Jr) J JSo "Ire-'A^re"'') rAi(r)

Perhaps a final word is in order with regard to the use of contour integration for
the evaluation of the integral. The calculation could have similarly been carried out
by making the transformation, a = is. (a. may be thought of as a Fourier transform
variable.) Utilizing the a variable, the integral for Qmr (Eq. A-l)) becomes one along
the real axis (in the ct-plane) which can be evaluated by a (wholly) numerical integration,
for example. It is thought the present method is somewhat more advantageous for
supersonic flow. The wholly numerical integration approach has also been programmed
for machine computation and it has been found that for a desired degree of accuracy,
this approach requires considerably more computation time than the contour inte-
gration method, approximately a factor of ten. This is because in the present method
the residue contribution dominates the integral contribution, except for n = 0, and
also the integrand of the integral decays exponentially along the branch line to infinity.
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Appendix B

The Form of Gmr for \pm = sin rrnrx

There are two cases to be considered depending on whether m and r are or are not
equal.

(i) m — r:

r n (« + ik)2 J -s 2(mir)2 , nm..A , (s + 2ik)°Us) ~ 2 V + (™-)5 + F+M5 [1 - (-1) e ]| + 2

(ii) m 9^ r:

rm
Gmr = (s + iky 2 2r — m

+ [1 - (-l)m + r] rm

Note that Gmm has poles at s = ±imir and Gmr (■m 9^ r) has poles at s = ±imir,
s = ztir-rr. However, the residues at these poles are zero. Also note that Gmr = (—l)m + r
Grm as is to be expected from the discussion at the end of Section 2.
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