STRESS FUNCTIONS FOR COUPLE AND DIPOLAR STRESSES*

By D. E. CARLSON, (University of Illinots, Urbana, Illinois)

1. Introduction. In a recent paper Gurtin [5] established a complete representation
for symmetric second-order tensor fields in terms of another symmetric second-order
tensor field and a vector field. His representation is analogous to the Stokes-Helmholtz
resolution of a vector field into the curl of another vector field and the gradient of a
scalar field. Gurtin was thus led to a complete representation for equilibrated stress
fields in continuum mechanics—the generalized Beltrami solution. It is the purpose
of the present paper to extend these results to more general theories of continuum
mechanics, namely the Cosserat [1] continuum and the dipolar continuum of Green
and Rivlin [6].

Giunther [3] has obtained a stress function solution of the Cosserat equations of
equilibrium. However, his solution cannot be complete for regions with holes because
in the absence of couple stresses, it reduces to the Beltrami solution (cf. Gurtin [5]).

Sections 2 and 3 contain the equilibrium equations of the above theories and several
solutions in terms of stress functions. In Section 4, following Gurtin [5], we establish
some general representation theorems for second- and third-order tensor fields and
utilize them to demonstrate the completeness of the solutions presented in Sections
2 and 3.

2. Couple stresses. The stress equations of equilibrium for a Cosserat [1] continuum
may be written as

L+ 1 =0, 2.1)
My + ety +¢; =0

when referred to rectangular Cartesian coordinates.** In Egs. (2.1) t;; is the stress tensor,
m;; the couple stress tensor, f; the body force per unit volume, and ¢; the body couple
per unit volume.

Introducing the quantities

M = Se1xMa (Mi; = €imnMimn), 2.2)
Cii = 31,0 (€ = €imnCon),
we can write Egs. (2.1) in the equivalent form
L+ fi =0, 2.3)
Mk + b + € =0
Note from (2.2) that
Mmiiwm =0,  cupy = 0. 2.4)

*Received June 18, 1965.

**We use the usual indicial notation of Cartesian tensor analysis. Latin subscripts have the range
(1, 2, 3), and summation over repeated subscripts is implied. Subscripts preceded by a comma indicate
differentiation with respect to the corresponding Cartesian coordinate. Kronecker’s delta and the alternat-
ing symbol are denoted by 8;; and e, jx , respectively. A pair of subscripts is enclosed by parentheses ( )
to indicate the symmetric part and by brackets [ ] to indicate the skewsymmetric part.
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We will work with m;; and Eqgs. (2.1). However, we can immediately write our results
in terms of m,;, by use of Eqgs. (2.2).

The following theorems, which provide solutions to Egs. (2.1), may be confirmed
by direct substitution. We choose not to include the obvious smoothness requirements
in the statements of these theorems.

TaEOREM 2.1. Letd,, ¢., 8:, and ¢, salisfy

Ve 4 einein = — 1, (2.5)
V20, + einix + 20, = —c: .
Define t;; and m;; by
Lii = CompCinaWmn.pe — 0:ii%x + 0 + 3. + einner (2.6)
Mij = CimCinaQmn.pa — 0iiOn + 0ii + 0,0 + €,

where w;; = w;; and Q;; = Q;; . Then t;; and m,; satisfy Egs. (2.1).
In particular, if ¢, , ¢, , 6:, ¢, and Q;; vanish identically, we recover Schaefer’s {2]
solution of the usual equations of continuum mechanies (cf. footnote in Section 4).
THEOREM 2.2. Letd,, ¢, , and n,; satisfy

Vziy.‘ + enei = —fi, (9 7
Vi + 20 = —c .
Deﬁne t.’,’ a’ﬂd m;; by
Lii = €imp€ine®@mn.pa — 00k + i + ¢ + einor (2 8)

Mi; = €imp€ingXmn.pa — 0:iTk,k + Ti,j + 7m0,

where here w;; = w;; but x:; need not be symmetric and o; is arbitrary. Then t;; and m,;
satisfy Eqgs. (2.1).

The generality of the above solutions will be established in Section 4.

3. Dipolar stresses. In the dipolar case of the multipolar continuum mechanics of
Green and Rivlin [6], the equilibrium equations appear as

Tn‘..‘ + Fi =0,
Milikl‘i + Tlikl + Cum = 0.

In Egs. (3.1) T; is the simple surface stress monopole, M., the simple surface stress
dipole of the first kind, F; the simple body force monopole per unit volume, and C;
the simple body force dipole of the first kind per unit volume.

We note that, in light of Egs. (2.4), Egs. (3.1) have the same form as Egs. (2.3).
Hence for each of our results pertaining to ¢;; and m.;, an analogous result pertains
to T;; and M,;., . In particular, Egs. (3.1) are equivalent to

Tt’i.i + Fi = 01
M.+ euTu+C; =0,

(3.1

3.2)

where

M. = €imMinn M = se My,
C; = €imCmn (Cuil = %en‘icz)‘

3.3)
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The following theorem, which may be confirmed by substitution, provides an alternative
solution in terms of M ,;, and not just M ;;x; . It will be shown to be complete in Section 4.
THeorREM 3.1. Letd;, ¢, , and ¥;; salisfy

Vzﬂ.' + i = -F,,
Vz'//lm + einor = —Clrijy ©

(3.4)

Define T;; and M ;. by
Ti; = Cimbinmnoa — 0:%x + Oy + 35 + i,
Mih = €1,8imeinrAimn.var T Yim, imiie — vz(‘)’u.xik + Yiiaa) + v47€i.k
— N + Vi + Ve

where w;; = w;; but Ay, vii , and \;; are arbitrary. Then T';; and M ,;, satisfy Egs. (3.1).
If we represent the skewsymmetric tensors y¥;;; and C;;, in terms of their dual
vectors

(3.5)

'pi = eimn‘pmn (¢liil = %elii‘l/l)y (3.6)
Ci = eimnomu (Cliil = %eliicl)v

Eqgs. (3.4) become
Vzly.' + einpie = —F;,
Vzlbs + 2¢s = -C-’ )

and these equations are identical with Eqgs. (2.7).

4. Completeness theorems. For the remainder of the paper R will denote a bounded,
open, integrable (Jordan-measurable) region of a three-dimensional Euclidean space.
The closure of R will be denoted by R’. We write f ¢ C¥(R) if and only if f is a real-
valued function defined and N times continuously differentiable on R, and we write
f £ C°(R") if and only if f is defined and continuous on R’.

The proofs of our representation theorems will be based in part on the following
lemmas. A proof of the first lemma can be found in Courant [4, p. 246]. The latter
lemmas follow successively from the first one.

LemMa 4.1. Let pe C°(R') and p ¢ C¥(R) with N > 1. Define f by

jx) = - f lxu g)il “.1)

(3.7

Then f ¢ C¥**(R) and V*f = uon R.
LemMma 4.2.  Let the hypotheses of Lemma 4.1 hold but with N > 2, and define f by (4.1).

Define g by
g(x) = L f Ixf(_‘f) q 4.2

Then g ¢ C"**(R) and V*g = p on R.
Lemma 4.3.  Let the hypotheses of Lemma 4.1 hold but with N > 3, and define f and g
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by (4.1) and (4.2), respectively. Define h by
1 [ _9®
= = [ 4.
Then h ¢ C¥*(R) and V°h = p on R.

We now turn to the statements and proofs of our completeness theorems.

THEOREM 4.1. Let t(ii) 3 CO(R/), t(i,‘) € CV(R), and Mij) &€ CO(RI), My € CA(R)
with N Z 2. Then there exist wW;; = w;; & C‘v(R), 0,‘ € CN—I(R), Piy and Q,‘,’ = 9,‘.’ € CN(R),
0; € CN_I(R), ¢.‘ such that

tii = Cimin@mn.pa — 0:%u T 0 + & + € 4.9

and
Mi; = CimingQmnva — 0:ibee + 05 + 0; + it . (4.5)
Moreover, if N > 3, t;;;, ¢ C'(R), m;;, € C'(R), and ;; and m,; salisfy Egs. (2.1); then
v27-7i + enei = —fi,
V2, + e+ 20, = —¢; .

Proof. The second part of the theorem follows from Theorem 2.1. Since the repre-
sentations of ¢;; and m,; arc of the same form, it suffices to establish representation (4.4)
for t;; . We decompose ¢,; into its symmetric and skewsymmetric parts:

(4.6)

Li = tan + tun - (4.7)

Setting
©i = 2eimulmn (4.8)

we have
L) = €ijnp - (4.9)

Turning now to the representation of {.;;, , we note that by Lemma 4.2 there exist
A = A;; £ CV?(R) such that

tapn = VA, . (4.10)
Also, we have the identity
VA = €:168imCioclmaiApaaved — Aimimi; + V(Au; + A0l (4.11)
as is readily verified with the aid of

€iikCivg = 0;p0kq — 0;40kp . (4.12)
Next define
Wim = Cipelmaadya,ca s (4.13)
¢ = Au.z ’

and conclude from Eqs. (4.10) and (4.11) and the symmetry of A;; that
Liy = CimCindpmpe — Huei + V2@ + 97.). (4.14)
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Now set
Ty = 8:%.s 4.15)
and note that
CinCinalmnpa = 0,V Ohn — Bhkis - (4.16)
Eqgs. (4.14) and (4.16) yield
Liiy = Comind@nnpa + Qunpa) — 8V, + V@5 + 87.). (4.17)

The proof is completed by defining
Wi = w:,'i + Ty,
3, = VW,

(4.18)

so that
Ly = Cim@ing@Wmn.pe — 0:i0x + 3y + 8 0. (4-19)

The representation (4.14) of the symmetric tensor ¢;;, is due to Gurtin [5] as is
the step which leads to the simpler representation (4.19).*

THEOREM 4.2. Let t(;,') € Co(Rl), t(;;) 4 CN(R), and m;; & Co(R/), m;; € CN(R) with
N > 2. Then there exist w;; = w;; € C¥(R),9: ¢ C" ' (R), ¢:, and x:; ¢ CY(R), o; ¢ C''(R),
7: £ CVY(R) such that

Lij = €imp€ina®@mnpa — 80k + Fii + 3 + e (4.20)
and
Mij = Cim€inaXmnpa — 0:ii0kx T 05i + Mji - (4.21)
Moreover, if N > 3, t;;, ¢ C'(R), and t;; and m;; meet (2.1); then
VS + engin = —fi,
Vi + 20 = —ci .

(4.22)

Proof. The second part of the theorem follows from Theorem 2.2, and the repre-
sentation (4.20) of ¢;; was established in Theorem 4.1. We are left with verifying the
representation (4.21) of m;; . By Lemma 4.2 there exist B;; ¢ C¥**(R) such that

mi; = V4Bii . (4.23)

*Representation (4.19) gives us a refinement of Gurtin’s [5] generalized Beltrami solution of the
usual equations of continuum mechanics. If

Tij = €impCingWmn,pq — 0ij%kk + Fij + I (wji = wij)
and V29; = —b;, then 7;; is a solution of
Ti5.i +b; =0, Tii = Tij.
Setting

- 15 =3 .
Zij = wij — 38;jwik (wij = Zij — 8:Zm)

we obtain Schaefer’s [2] solution
Tii = = V22 + Zimmi + Zimomi — 8iiZunmn — 8:9kk + 80 + 0.
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Again we have the identity
VLB.',‘ = €:10€imtCipbmaaBra,ated = Bim.imi; + vz(Bu,z; + Bli.h’)- (4-24)

Defining
Xim = €1pmaaBoa.ca »
ol = B, , (4.25)
N = szu.z )
we have from Egs. (4.23) and (4.24) that
Mij = CiminXmnva — Thowii + V0hi + mii . (4.26)
Setting
Xii = Xi; + 800, (4.27)
o; = V!

completes the proof.

THEOREM 4.3. Let T(;;, ¢ C°(R’), T:iy ¢ CY(R), and M € C°(R"), M;;r ¢ CV*'(R)
with N > 2. Then there exist w;; = w;; ¢ C*(R), 9; ¢ C* '(R), ¢: , and A.;x ¢ CV'(R),
v:; € CV(R), Ni; € CYY(R), ¥i; € CV 7 (R) such that

Tii = €im€ind@mn.pa — i + s + 35 + einen (4.28)
and
Mij = €158imeinrAtmnoar F+ Vimotmiie — V Givie + viraw) + Vi
- xlk.lii + vzxik.i + 'pik.l' . (4'29)
Moreover, if N > 3, Ty:;y ¢ C'(R), and T:; and M ,;, satisfy Eqgs. (3.1); then
V% + enpin = —Fi,
V¥un + einee = —Crijy -

Proof. The second part of the theorem follows from Theorem 3.1, and the repre-
sentation (4.28) of T';; was established in Theorem 4.1. The representation (4.29) of
M ;, is deduced as follows. By Lemma 4.3 there exist C,;; ¢ C"**(R) such that

M;,'k = VGC.','k . (4:.31)

Also, in view of (4.12), we have the identity

(4.30)

6
v Ciik = —eilaeimbekncelpdemqeenrfcpqr.abcde/ + Clmn,lmm'ik (4 32)
2 4
- v (Cilm.lmik + Clim.lmo'k + Clml:,lmii) + v (Clik.l-' + Cilk.li + Ciil,lk)'
Now define

Atmn = —€1508meclnrCrarraer »

vii = Cijia (4.33)
Aij = Vzoui.l ,

Vi = V‘Cl-‘i.l ’

and the theorem is proved.
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