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STRESS FUNCTIONS FOR COUPLE AND DIPOLAR STRESSES*

By D. E. CARLSON, (University of Illinois, Urbana, Illinois)

1. Introduction. In a recent paper Gurtin [5] established a complete representation
for symmetric second-order tensor fields in terms of another symmetric second-order
tensor field and a vector field. His representation is analogous to the Stokes-Helmholtz
resolution of a vector field into the curl of another vector field and the gradient of a
scalar field. Gurtin was thus led to a complete representation for equilibrated stress
fields in continuum mechanics—the generalized Beltrami solution. It is the purpose
of the present paper to extend these results to more general theories of continuum
mechanics, namely the Cosserat [1] continuum and the dipolar continuum of Green
and Rivlin [6].

Giinther [3] has obtained a stress function solution of the Cosserat equations of
equilibrium. However, his solution cannot be complete for regions with holes because
in the absence of couple stresses, it reduces to the Beltrami solution (cf. Gurtin [5]).

Sections 2 and 3 contain the equilibrium equations of the above theories and several
solutions in terms of stress functions. In Section 4, following Gurtin [5], we establish
some general representation theorems for second- and third-order tensor fields and
utilize them to demonstrate the completeness of the solutions presented in Sections
2 and 3.

2. Couple stresses. The stress equations of equilibrium for a Cosserat [1] continuum
may be written as

tii.i + fi = 0, (21)
miUi + eikltkl + Cj = 0

when referred to rectangular Cartesian coordinates.** In Eqs. (2.1) is the stress tensor,
niij the couple stress tensor, fi the body force per unit volume, and c, the body couple
per unit volume.

Introducing the quantities

(w.,■ j €iimti) t ^

^ii 2(pi t

we can write Eqs. (2.1) in the equivalent form

tn.i + fi = 0,

Note from (2.2) that

(2.3)
+ tUk j + cik = 0.

mm— 0. c(«j) — 0. (2.4)
^Received June 18, 1965.

**We use the usual indieial notation of Cartesian tensor analysis. Latin subscripts have the range
(1, 2, 3), and summation over repeated subscripts is implied. Subscripts preceded by a comma indicate
differentiation with respect to the corresponding Cartesian coordinate. Kronecker's delta and the alternat-
ing symbol are denoted by dij and emt, respectively. A pair of subscripts is enclosed by parentheses ( )
to indicate the symmetric part and by brackets [ ] to indicate the skewsymmetric part.
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We will work with m,-f and Eqs. (2.1). However, we can immediately write our results
in terms of mijk by use of Eqs. (2.2).

The following theorems, which provide solutions to Eqs. (2.1), may be confirmed
by direct substitution. We choose not to include the obvious smoothness requirements
in the statements of these theorems.

Theorem 2.1. Let 6< , and <j>, satisfy

V"t?, + eiiktpi,k = —/, ,

V"0,- + eiik<f>j,k + 2<pi = — c, .

Define tu and m,, by

ta eimvejnq(j)mniVQ $ktk "i- $i,j ~1~ euk*pk , ^

ma = eimvejnqSlmn,VQ — 5,,Qk.k + 0,-.,' + 0,-,; + eijk<j>k ,

where co,-,- = co.;,• and fi,,- = . Then ii;- and mi; satisfy Eqs. (2.1).
In particular, if cf , , 0; , </>, , and O,, vanish identically, we recover Schaefer's [2]

solution of the usual equations of continuum mechanics (cf. footnote in Section 4).
Theorem 2.2. Let , <p{ , and 17; satisfy

V2!?, + euk<pj,k = —ft , ^ 7)

VV + 2^, = -c, .
Define tu and ?n,-, 6?/

11,- eimvejnQi£mntpq &a$k,k "I- ^i.j e^jkipk ,

TO-;," (/,- mv^in<iX.mn , pq ^ii^k.k ~~f~ ̂  i , i ~i~ Vi.i T

where here = co,-,- but Xa need not be symmetric and <t{ is arbitrary. Then tu and to,-,-
satisfy Eqs. (2.1).

The generality of the above solutions will be established in Section 4.
3. Dipolar stresses. In the dipolar case of the multipolar continuum mechanics of

Green and Rivlin [6], the equilibrium equations appear as

Tu., + Fj =0, ^ ^

+ Tlik 1 + C^-tj = 0.

In Eqs. (3.1) Tu is the simple surface stress monopole, Miih the simple surface stress
dipole of the first kind, F, the simple body force monopole per unit volume, and C,,
the simple body force dipole of the first kind per unit volume.

We note that, in light of Eqs. (2.4), Eqs. (3.1) have the same form as Eqs. (2.3).
Hence for each of our results pertaining to <i; and miik an analogous result pertains
to Tif and Mi[jk] . In particular, Eqs. (3.1) are equivalent to

Tn.i + Fi = 0, (3.2)

Mu.i + e,kiTki + Cj = 0,
where

M,, = ejm„Mimn (M i[jk] — %e 1 ,■ kl\l, 1), (3 3)

C, = eimnCmn (Cun = \euiCi).
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The following theorem, which may be confirmed by substitution, provides an alternative
solution in terms of M iik and not just Miljk] . It will be shown to be complete in Section 4.

Theorem 3.1. Let i), , <p% , and i/\, satisfy

+ eiik<Pj,k = —Fi ,

VVun + eiik<pk = — Cn,] .

Define Tu and Miik by

J " nq^mn ,VQ ^ij^k.k I $i,i I I ^ijk^Pk 1

^ilp^imq^knr^-lmn.vQr 1 *Y Im.lmiik ('Yil.ljk "1" 'Yli.lik) ~f~ Y *' j , k

— XIk,lij + VXk.i + 'pih.i I

(3.4)

(3.5)

Eqs. (3.4) become

where w,-; = but Aijt , yu , and X,, are arbitrary. Then Tt, and Miik satisfy Eqs. (3.1).
If we represent the skewsymmetric tensors 1plin and Cujl in terms of their dual

vectors

Ct = GimvPmn (^Mi/1 =

+ eijk<pj,k = — Fi , ^ ^

VVl + 2p< = -C; ,

and these equations are identical with Eqs. (2.7).
4. Completeness theorems. For the remainder of the paper R will denote a bounded,

open, integrable (Jordan-measurable) region of a three-dimensional Euclidean space.
The closure of R will be denoted by R'. We write / t Cn(R) if and only if / is a real-
valued function defined and N times continuously differentiable on R, and we write
/ r C°(R') if and only if / is defined and continuous on R'.

The proofs of our representation theorems will be based in part on the following
lemmas. A proof of the first lemma can be found in Courant [4, p. 246]. The latter
lemmas follow successively from the first one.

Lemma 4.1. Let /n e (f(R') and n e Cn(R) with N > 1. Define f by

<4»

Then f t CN+1(R) and V2/ = n on R.
Lemma 4.2. Let the hypotheses of Lemma 4.1 hold but with N > 2, and define f by (4.1).

Define g by

- ~h I i^it
Then g t CN+2(R) and V"<7 = ti on R.

Lemma 4.3. Let the hypotheses of Lemma 4.1 hold but with N > 3, and define f and g



32 D. E. CARLSON [Vol. XXIV, No. 1

by (4.1) and (4.2), respectively. Define h by

= (4-3>

Then h t CA+3(i2) and Vr7i = n on R.

We now turn to the statements and proofs of our completeness theorems.
Theorem 4.1. Let tUi) t C°(R'), t{ii) t CN(R), and m(i;) e C°(R'), m{ii) e Cn(R)

with N > 2. Then there exist co,,- = a>,, e Ca(2?), e Ca_1(/2), <p,- , and fif; = ft,( e Cn(R),
6i e G'~"I~1(R), <t>i such that

tn = eimpejnawm„,va — 5 + eiik(pk (4.4)

and

ma = eimveinaumn,va — 8,,6k,k + 6",.3 + ,, + eiik<t>k . (4.5)

Moreover, ij N > 3, tun e C\R), m[in e (?'(R), and tu and msatisfy Eqs. (2.1); then

^7 $i "I- Cijk<Pi ,k fit (46)

V2$i + eijh<j>j,k + 2(pi = —Ci .

Proof. The second part of the theorem follows from Theorem 2.1. Since the repre-
sentations of tu and ma arc °f the same form, it suffices to establish representation (4.4)
for tu . We decompose £;, into its symmetric and skewsymmetric parts:

tii = hat + ha\ ■ (4-7)
Setting

<Pi = heim Jmn , (4-8)

we have

h'H = ViikVk ■ (4.9)

Turning now to the representation of luj) , we note that by Lemma 4.2 there exist
A a = A a e Cn+2(R) such that

tti„ = VM„- . (4.10)
Also, we have the identity

V A i j C{ i ae j m])€ ipcCmqdA vq t abed Aim imij "I- V (A i i t ~*'1 ij.ii) • (4.11)

as is readily verified with the aid of

Ciik^ipq 8]p8kq 8jq8kp . (4.12)

Next define

^im cipCemQ(iAPQtcd , 13)

= aua,

and conclude from Eqs. (4.10) and (4.11) and the symmetry of A{j that

ha) = eimveinqu'mn,va — dk.kn + V2(tVi.j + t?',,). (4-14)
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Now set

rf/ = (4.15)

and note that

eimvein<,Tmn,p„ = SaV^'k.k — K.kn ■ (4.16)

Eqs. (4.14) and (4.16) yield

t(i!) — ZimvViwW,n„,v<l + 0m„,pa) — + V "(«?',# + #'.,)• (4-17)

The proof is completed by defining

£°i' = Wi' ' (4.18)

= V'd'i ,

so that

^(ij) ^ imv^inq^mn ,pq ^i$k,k ~(~ ^i,j "I- ^ j , i • (4*19)

The representation (4.14) of the symmetric tensor £(,•,•> is due to Gurtin [5] as is
the step which leads to the simpler representation (4.19).*

"Theorem 4.2. Let t{ij) e C°(R'), tlin t CN(R), and m,-,- e C°(R'), wi,-,- e C'v(i?) with
N > 2. Then there exist »„ = «„ e CA'(/e), e C"~l(R), <p, , and Xa t CN(R), cr, e CN~l(R),
■qi e CN'i(R) such that

Ui ' eim„ejvawmn,va — &ij$k.k + + e-ukVk (4-20)

and

ma = eim„einQxmn.pa — Stjffk.t + fi,/ + ij,.,- . (4.21)

Moreover, if N > 3, e C!(i?), and tit and mfi meet (2.1); then

V2i?i + eiik<pj,k = — , (4 22)

V2j;,- + 2^, = — c, .

Prooj. The second part of the theorem follows from Theorem 2.2, and the repre-
sentation (4.20) of tu was established in Theorem 4.1. We are left with verifying the
representation (4.21) of to,-,- . By Lemma 4.2 there exist B,, e Cw+'{R) such that

m„ = V4Bi:- . (4.23)

*Representation (4.19) gives us a refinement of Gurtin's [5] generalized Beltrami solution of the
usual equations of continuum mechanics. If

fij ~ f'impf'jnq(^mn,pq &ijflk,k i<1 (^ji ~ Wj,')

and V2tfi = — 6> , then t;,- is a solution of

Tii.i + l>j = 0, Tji = Tjj .

Setting
2= wn — j ii/uu («<j = 2,v — SijZkk)

we obtain Schaefer's [2] solution

Ti/ = — V22+ 2j„,m)- -f- — Si;2m„,mn — &ijdk,k + <?i,/ + '5,.t .
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Again we have the identity

V Bij C i iaC j mbC Ipc^mqdBpq ,abcd BIm.lmii ~f~ V (Bntlj H~ Bli.li)• (4.24)
Defining

Xin» @Ipc^mad^vq , g<1 j

<r; = Bit.t , (4.25)

Vi = V2Bu,t ,

we have from Eqs. (4.23) and (4.24) that

HIy " Gk.kij I V fTj, j ! Vi,i ' (4-26)
Setting

Xi i XIJ + &ii&k.k j j

<t, = vV;
completes the proof.

Theorem 4.3. Let TUi) e C°(R'), T(ii) e CV(J?), and e C°(#'), ^,1 « Cw+I(ft)
wii/i N > 2. Then there exist to,,- = «f< e Cs(R), t CN~1(R), (pi , and Aiik t C'v'1(R),
T,-,- e CW+3(K), Xi; £ CN+\R), iij t CN'\R) such that

Tu = eimvejnawmn,VQ — biftk.k + &>.,■ + #,■.< + eii)t<pk (4.28)

and

Miik € ijmqCknr A-lmn ,pqr 'Ylm.lmiik ('Yil.lik 1 *Ylj,lik) ~f~ ^7

— X+ V2Xit.f + • (4-29)

Moreover, if N > 3, TU)1 £ Cl(R), and 7\, and Mijk satisfy Eqs. (3.1); then

^7 "I- ̂ iikfi.k t ^ 30)

VVn.-i + e,-,-ri0* = — c[i,• ] •
Proof. The second part of the theorem follows from Theorem 3.1, and the repre-

sentation (4.28) of Tu was established in Theorem 4.1. The representation (4.29) of
Muk is deduced as follows. By Lemma 4.3 there exist C\:t t CN+i(R) such that

Miik = VaCiik . (4.31)

Also, in view of (4.12), we have the identity

V C {j k laCj mb^knc^'Lpd^mqe^nr pgr, abcdti I ^Imn.lmniik 3^)

V {'fiilm,lmik I CIjm.lmik I CLmk.lmii) 1 (Clik.li 1 Cilk,It I ^)•

Now define
^■Imn C ̂ p^emqeenrfCVQr td« f }

la = Cm., , (4.33)

A„ = V'Cni.i ,

= V4C,(,t, ,
and the theorem is proved.
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