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ON A MAPPING POLYNOMIAL FOR GALOIS FIELDS*

By ARTHUR GILL AND JEAN-PAUL JACOB (University of California, Berkeley)

1. Introduction. A number of digital processes, such as the identification of two-tone
patterns, the computation of multivalued Boolean functions, the decoding of binary
block codes, the addressing of "files" in the memory of a computer, etc., may be described
as a many-to-one mapping from an n-dimensional space S„ (over a binary field) onto
itself. This mapping can be expressed by means of a polynomial whose coefficients,
to a large extent, determine the "ease" with which any of the above processes can be
carried out. In searching for the "easiest" such polynomial, a common task is that
of computing sets of such coefficients for specified mappings, or of computing mappings
to conform with specified sets of coefficients. The purpose of this note is to show how,
by a suitable representation of <S„ , the relationship between the mappings and the
coefficients becomes especially simple, leading to considerable simplification in the
computation procedures.

2. The mapping polynomial. Consider the Galois field

GF(2") = {o„ ,ai , ••• ,0^} (a0 — 0). (1)

An element a of GF(2") can be represented by a polynomial in £ with coefficients from
GF(2), of degree n — 1 or less:

a = a0 + a£ + • • • + 1 (a,- £ GF (2), ; = 0, 1, • • • , n — 1). (2)

Field operations are performed modulo 2 and modulo any fixed irreducible polynomial
in J with coefficients from GF(2), of degree n:

p(£) = ir0 + 7Ti| + • • • + 7rn_i£n 1 + (3)

p(£) is called the modulus polynomial of GF(2").
The characteristic polynomial of a, is a polynomial in x with coefficients from GF(2"),

of degree 2" — 1 or less, defined by:

i.('-r) = II (x ~ «-) = <Po" + <Pi(0z + • • • + <P2"-a"'1
(4)

(<P, GGF(2"), i = 0, 1, ••• ,2" - 1).

The following two theorems are taken from Dickson [1]:
Theorem 1.

/.(a,) =
jl, V = i, (5a)

jo, v 9^ i. (5b)

I'rooj. From the theory of Galois fields it is known that

II (x + ak) = + 1; (6)
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setting x = 0:

ru = i. (7)
k* 0

Now,

/.(a.) = II (a. - a,) = II a* (8)

which, by (7), implies (5a). 5(b) follows from the definition (4).
Consider the many-to-one mapping / from GF(2") into GF(2"), with a\ denoting

the image of a, . Define:
2n— 1

f(x) = 1i(x)a' = <p0 + <PiX + • • • + (Pi'-ix2"'1 ■ (9)
i =0

Theorem 2.

/(a,) = a'j . (10)

Proof.

I(a,) = X /,(«/)«< = /,(a,K = a. • (11)

/(x) is called the mapping polynomial of the mapping /. Any many-to-one mapping /
from S„ into Sn may be regarded as mapping GF(2") into GF(2"), and hence expressed
as a mapping polynomial f(x). Recognition of an element of Sn , therefore, can be per-
formed by representing an n-tuple («„ , a, , • • • , <*„_!) as a polynomial a = a0 + +
• • • + and computing f(a) = a' as per rules of GF(2"); the coefficients of a' are
then the elements of the n-tuple which labels the class to which (a„ , , • • • ,«„_,)
belongs.

Clearly, any computing circuit or program devised for computing f(x) requires
complete information on the coefficients <p,- of /(x). In general, this amounts to
''remembering" all 2" pairs (j, <pf)—a requirement as severe as that of remembering
all pairs of n-tuples which define the original mapping. In particular cases, however,
it may happen that the coefficients of f(x) exhibit some symmetry which obviate the
requirement to remember all the (j, <p,) pairs (for example, if <p,- is periodic with j,
with the period r, it is sufficient to remember the integer r and the first r pairs). These
are the cases for which the mapping polynomial can be used to advantage in recognition
processes where memory capacity is costlier than computation time. In searching for
such cases, one has to pass repeatedly from sets of mappings to sets of polynomials,
and conversely. The following section will show how this passage can be simplified.

3. Properties of coefficients of f(x). For reasons which will become apparent pres-
ently, we shall always choose a maximum-period polynomial as a modulus polynomial
for GF(2") (at least one such polynomial exists for every n). With this choice, £ becomes
a primitive element of GF(2"), and we can write

a, =r' (i = 1,2, ••• ,2" - 1). (12)

In addition, the coefficients of the characteristic polynomials /, (x) assume a relatively
simple structure:
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Theorem 3.
(0, [l, j = 0. 2" — 1. (13a)<Pi = J

When i =*= 0:

<Pi =

0, otherwise. (13b)

j ^ 0, (14a)

.0, j = 0, (14b)

Proof. (4) can be written as

- frt- (15)
When i = 0, Oj = 0 and (15) yields

/„(z) = 1 + z2"1 (16)

which implies (13a) and (13b). When i ^ 0, a{ ^ 0 and (15) can be written as

+ 2*# _2n —2 i 2* —3 2 i i 2" —2 i 2"-L /1 rr\—;  = at £ + at x + • • • + a,-a; + x (17)
X + di

(since a]"'1 = 1). Hence <Pq%) = 0 and
_(»)   2n—1 — i 2B-l-j (mod 2"-l) — /(mod 2»-l) /1 Q\<Pi = = a, . (ioj

(14a) then follows from (12).
Let <E> be a 2" X 2" matrix with rows i = 0, 1, • ■ • , 2" — 1, columns j = 0, 1, • • • ,

2" — 1, and the (i, j) element . By Theorem 3, <1» has the general form shown in (19)
(where the exponents are unique modulo 2" — 1). (19) places in evidence the simple
structure of <I>: Row 0 has the form 10 • • ■ 01 and column 0 the form 10 • • • 0; from
row 1 down, column 2" — 1 has successive powers (0 through 2" — 2) of £°, column 2" — 2
successive powers of column 2" — 3 successive powers of if, • • • , column 1 successive
powers of £"~2. The construction of «1> is simplified further by noting that the submatrix
obtained by deleting row 0 and column 0 is symmetrical about the diagonal extending
from the bottom left to the top right corners.

0

1
2

0 1
~1 0

0 1

0 £2"-2

0 £<2""2>2

0 £<2""2>3

2" - 4 2" - 3 2" - 2 2" - 1

0 0 0

1 1 1

t a2 a
e r

r

(19)

2"   2L0 £(2" —2) (2n —2) # £.3(2"-2) ^2(2n-2) ^2n-2 |

Example 1. Let n = 3 and p(£) = 1 + £ + £3. GF(23) consists of the elements

a0 = 0,
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1a j = | =1,
a2 = £ =

r2 >2a3 = I = I ,

o-i = C — 1 + £,
a,=?= a + £2,

= £J = 1 + £ + £2,

a? = f6=l +?2 (|7=D.
In this case:

0

1

2

* = 3
4

0 1 2 3 4 5 6
1 0 0 0 0 0 0

0 111111

o s6 ?5 f4 f e a
o e e s *' s4 a2
o t a f ? e ?
o e ? e e a a4
o e t e a ? r

(20)

(21)

5
6

7 Lo f f £3 t £ t
Define the following vectors:

s? — (^o i 01 i ■ ■' > 02"-0) (22)
a' = (a!, , a[ , • • • , a'.--,)- (23)

Theorem 4.
= a'<I». (24)

Proof. The jth element (j — 0,1, • • ■ , 2" — 1) of a'<l> is
(o) r | 1 1 (2n — 1) / (<r\ r \

<Pi «o + <£, «i + ' " ' + fi Oj»-1 (^5)

which, by (9), is the coefficient of x' in j(x).
Theorem 5. 4> is nonsingular. Let its inverse *1" have the (i, j) elements \(i, j = 0,

1, • • • , 2" - 1). Then:
fl, i = 0,
0, t ^ 0. (26b)

i.n =

When j 9^ 0:
xP . = |''(/-l)tmod2»-l)> ^27)

Prooj. Let 4»,I' = M, with the (i, ;) elements yu,, . Then, by (13a)-(14b) and (26a)-
(27), we have:

Moo = 1, (28)

Mo, = 1 + =0 0" * 0), (29)
M.-o = 0 (i 5^ 0). (30)
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For all i ^ 0, j ^ 0:
2n — 1

Mij =
v~0

2n —1
  ^ ^ v ( i — 1) (mod 2" — 1)— 1) (mod 2n— 1)

v=l

2n—1
__ ^ ^ (/-») (mod 2n—X )

y = l

When i = ;, is the sum of an odd number of l's, and hence 1. When i ^ j,
let = v. Then

Ha = 1 + r) + 7j2 + • • • + V2"'2 (31)

= (i + ir-va + *) = o.
Thus, is the identity matrix and >1' =

0 12 3 4

0 111 1 1

1 0 1 £ f £3

2 0 1 |2 S4 t

3 0 1 f t t

2"

2" — 1

1
c.2n —2

^(2"-2)2

c.(2n—2) 3

2n — 2 j.2 (2n— 1) t.3 (2" — 1) «.(2n —2) (2n —2)o i rt f

(32)

2" — 1 [_0 1 1 1 1 • • • 1

Theorem 5 implies that VP" has the general form shown in (32) (where the exponents
are unique modulo 2" — 1). Note that 4» with row 0 and column 0 omitted and •I' with
row 2" — 1 and column 0 omitted are identical except for reversal in the order of columns.
For example, if <J> is as given in (21), 1" is the matrix shown in (33).

0

1

2

T = 3
4

5

6

0 1 2 3 4 5 6 7

1111111 1

0 1 £ f $3 £4 £5 f

o i e f4 f ? ? f
o 1 |3 i6 f f £ ?4

o i ? t £» ̂  ? ?
o i i5 r $ i8 r r
o i e t a* e e *

7 0 111111 L

(33)
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Thus, we can write

a' = (34)

By means of (24), the mapping polynomial f(x) can be readily computed for any specified
mapping a —» a'. By means of (34), one can compute the mapping a —> a' corresponding
to any specified mapping polynomial f(x) (for example, a polynomial whose coefficients
exhibit some symmetry or periodicity).
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