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DISPERSION OF SMALL AMPLITUDE STRESS WAVES IN PRE-STRESSED
ELASTIC, VISCO-PLASTIC CYLINDRICAL BARS*

BY

jOzef bejda and tomasz wierzbicki
Institute of Basic Technical Research, Polish Academy of Sciences

Abstract. The effect of geometrical dispersion on the propagation of longitudinal
harmonic stress waves in prestressed elastic, visco-plastic bars is investigated. The
solution involves the Hunter and Johnson approximation in which radial and axial
displacements and all components of stress tensor are expanded as power series in the
radial coordinate. It is shown that the dispersion of the sinusoidal waves is generated
by the two simultaneously acting phenomena. These are the purely geometrical dis-
persion produced by the influence of a free boundary of the bar and the viscous dis-
persion caused by the viscous properties of material. The obtained solution embraces
the combined effect of the phenomena mentioned above. A numerical example is pre-
sented in which constants of material characteristic for mild steel were used. The result
of the computations provides a plot of phase and group velocities and damping co-
efficient against the frequency of harmonic waves. The present solution has been com-
pared with the Hunter and Johnson solution for strain-hardening elastic-plastic ma-
terial and with the exact Pochhammer-Chree solution for elastic rods.

1. Introduction. The theory of wave propagation in elastic/visco-plastic bars has
so far been developed on the basis of filament approximation. It was found that the
front of longitudinal waves in bars travels always with velocity of corresponding elastic
wave c0 . However the validity of these solutions is restricted to certain loading condi-
tions, since the velocity of the pulse propagated along the bar suffers a frequency-de-
pendent dispersion, which is neglected in the simple theory.

The dispersion of stress waves may be caused by the viscous properties of material.
In the case of the Maxwell body the phase velocity increases with wave frequency.
When the diameter of the bar is comparable with the wavelength, a dispersion of purely
geometrical nature becomes important. For elastic bars the phase velocity decreases
with frequency, starting from c0 , and tends to the velocity of Rayleigh waves. For
the material considered here, the two opposing effects mentioned above are present.

The objective of the present paper is to investigate the combined effect of both
viscous and geometrical dispersion in elastic/visco-plastic bars and to determine the
range of validity of one-dimensional theory. The result of the numerical computations
provides a plot of phase velocity and damping coefficient against the frequency of
harmonic waves. A similar curve for the group velocity gives some indications concerning
the overall pulse velocities and may serve for the proper interpretation of recent experi-
ments on this subject [1, 6],

In the present paper, the Hunter and Johnson approximate method [3] is used, in
which radial and axial displacements and all components of the stress tensor are ex-
panded as power series in the radial coordinate. Since only small amplitude waves in
pre-tensioned bars are studied, the assumption of a linear relaxation function and the
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linearization of the yield condition provides a satisfactorily accurate description of the
considered phenomenon. It should be noted that the studies on the effect of finite lateral
dimension of a bar within the framework of time-independent plasticity are in progress
[2, 3]. The results of the present paper may be regarded as an attempt at an explanation
of the same effect in bars whose material is characterized by more complex mechanical
properties.

2. Basic equations. Using a cylindrical coordinate system r, <p, z, consider an
infinite cylindrical bar of the radius r = a and assume that the material of the bar is
rate sensitive and can be described by the following constitutive equation (see [5]):

in = + To*(F) for VT2 > k,
2/J cV" (2.1)

e„- = for VJ, < k,
2n

where eu and su are the components of the strain rate and stress deviators, respectively,
70 , k and n are material constants, and J2 denotes the second invariant of the stress
deviation. The sign of J2 — k2 uniquelly determines whether the behaviour of the
material is elastic/visco-plastic or entirely elastic. The visco-plastic flow takes place
after the static yield condition has been reached. To ensure that the material is in the
elastic, visco-plastic range, we assume that the bar is quasi-statically preloaded to a
value a'0 just above the yield stress <r0 in pure tension. The corresponding strain rate in the
z — direction equals i0 = (2y/3k) (<r0 — <j0), while the remaining components of the
stress and strain tensors vanish. On this state of stress we superimpose small harmonic
disturbances representing an elastic, visco-plastic wave that travels along the bar with
the phase velocity c. We require the amplitude of the disturbance to be sufficiently small
so that no unloading occurs during the considered process. This assumption is of great
importance since it allows for considerable simplification of (2.1). Firstly, since all com-
ponents of stress tensor varies within narrow ranges the linear function <t'(F) = F
would give a satisfactory description of the strain rate sensitivity of the material.
Secondly, the nonlinear yield condition F = y/Tl/k — 1 can be linearized by expanding
the function \Z~J~2 in Taylor series around the point P0 which determines the state of
stress prior to the incremental disturbance.

In the case of axial symmetry the components rr„ and vanish and the function
F is expressed in terms of remaining components of the stress tensor as

P _ \/(o-r — <ry)2 + (gy — <xa)2 + (q-y — Q-z)2 + 677* _ . (0 9\

V6 k ~ ^ ;
By expanding (2.2) in Taylor series around the point Po(ffs = <x0 , ar = = rrI = 0)
and neglecting second and higher powers an approximate expression for F is obtained

F = 2<r' ~ ~ <r" - 1. (2.3)
2(7 o

The same result was obtained by Hunter and Johnson on the basis of somewhat similar
arguments.

It should be stressed here that no methods other than the linearization of (2.1) with
respect to the components of stress tensor seems to be possible to treat analytically the
considered problem.
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The non-homogeneous terms in (2.1) can be easily eliminated introducing the E. H.
Lee substitution [4]

^z &z 0-0 } ^r ~F" 2^0 t ^2

£z = *z ^0 ) 2 •

Now, using (2.3) and (2.4) we obtain from equation (2.1) four independent equations

h = ^ [ff, — v(&r ~ a-f,)] + — (<*' + Ol.

(2.5)

1 * "y
Cr [(Tr &m)] 0^, (jJt

1 • ~y*<? = Jj ~ "(*> ~ °"')] ~ ^ [25-, - (ov - O].

1 + V .
1" = -0- Tf. .

In the cylindrical coordinate system the components of strain rate tensor are related to
radial and axial displacements u, and u, by

d2 Uz . d2 Ur . d IWr\ . 1 d2 UT d2 Uz
f' = az dt ' 6r = ar dt ' ** = ~dt V7 /' 7" ~ 2 L 32 dt + arai.

Equations of motion in radial and axial directions have the form

(2.6)

a ay ay — Q-g arrz _ d2 UT
dr r dz ~ P dt2

daz drTZ 7Y*_ _

dz dr r ~ p dt2

(2.7)

In the case of infinite cylindrical bar the single boundary condition is the requirement
that the components <jr and t„ vanish on the surface r = a

TrXa, t) = ar(a, t) = 0. (2.8)

Equations (2.5)-(2.7) furnish a system of six equations with six unknown functions
(radial and axial displacement and four components of stress tensor). An exact analytical
solution of these equations does not seem to be possible. Therefore an effective approxi-
mate method developed and successfully used by Hunter and Johnson has been em-
ployed to reach the frequency algebraic equations and further results.

3. Solution of the Problem. Following [3] we use the power series expansion method
and assume the solution in the form

uz = ua{z, t) + r2u2(z, t),

uT = rui(z, t) + r3o)3(z, t),

az = h0(z, t) + r2h2(z, t), ^ ^

fr = fo(z, t) + r2j2(z, t),

<rv = fo(z, t) + r2g2(z, t),

T.rz = rk^z, t) + r lc3(z, t)
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preserving the Hunter and Johnson notation. Thus, the problem of determination of
six unknowns which are functions of three independent variables r, z, t has been reduced
to the solution of eleven equations for eleven functions which depend now upon two
arguments z, t.

After substitution of (3.1) into equations of flow (2.5), equations of motion (2.7)
and boundary conditions (2.8) and equating coefficients of rn (n = 0, 1,2), the following
system is obtained

(1 — ")/o — vh0 + af0 — ah0 = Eul ,

ct ct
fi — vg2 — vh2 — ah2 + 2 /2 + 2 92 = 3£o>3 ,

Ct Ct
0'2 vh2 vf2 ah2 + ~ f2 -f- ~ g2 — E<i}3 ,

ho 2^/o 2ah„ 2a/0 = Eu0 ,

h2 vf2 vQ2 2ah2 0^/2 ~ Eu2 ,

2(1 + v)'k, = 2Eu2 + E<bx , (3.2)

3/2 Q2 ki = pcoi ,

h'o + 2/cj = pu0 ,

K + 4k3 = pu2 ,

/o + «2/2 = 0,

fci + a'k3 = 0.

The prime and dot denote here differentiation with respect to axial distance z and time
respectively and parameter a is defined as a = yE/3k. The validity of the assumption
in which terms of order r3 and higher are neglected has been extensively discussed by
Hunter and Johnson [3]. This method has proved more powerful than many of the
previous approximations employed for the elastic problem.

We assume the eigenfunction solution for any one of the functions u0 , u2 , etc.

<Pi = A fi exp A1 ~ cii) (3 = 1,2, •■■,11). (3.3)

The amplitude of all functions decay exponentially with axial distance z and the damping
coefficient r?(<o) is also function of frequency of harmonic waves. Substitution of eigen-
function solution (3.3) into (3.2) yields eleven algebraic equations for eleven unknown
amplitudes Ax , A2 , ■ ■ ■ , Au . This system has a unique solution only when its funda-
mental determinant is equal to zero

\Akl | = 0. (3.4)

The non-vanishing elements of the matrix Akl are

A13 = %A2i — A3i = = Eioi,

Ai5 = A2S = A3g = 5.A47 = A5g = A 59 = via} -(- a),
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a . (x
A ,7 = (1 — v)icc + a, A2g = A 39 = - + to, An 9 = ^4 38 = J ~ VUt!,

SJ^4i = -^52 = —-463 = Eiw[iw + -J, 445 = = 2a + to, (3.5)

^4.6,10 = —2(1 + f)to, A 73 = j481 = A 92 = PO)2,

-47.10 = ^S5 = 1J6 = ( -j- 1] ) ; = -4-79 = J-^S.IO = J-4-9.ll = -4i0.7C

— ^11.10 — 1; A 10.8 — 11.11 — Oj ■

After rather lengthy, but elementary computations the determinant (3.4) can be
evaluated and written in the form

j(co, c, 1?) + iwg(CO, c, v) = o, (3.6)

which is equivalent to the following system of equations

/(co, c, v) = 0, ^ ^

g(w, c, ri) = 0.

It is convenient to introduce dimensionless functions and independent variables de-
fined by

m C o G** tr> o\X = — , y = art, V = - , (3 = — , (3.8)
Co Co Co

where c2 = i?/p is elastic velocity in filament approximation. Both functions j(x, y, v)
and g(x, y, v) have a polynominal form with coefficients depending solely upon the
Poisson ratio v and non-dimensional material constant /3:

f(x, y, v) = A uy'v' + x2Btiy'v' + x4Cuy'v' + x^D^y'v',

g(x, y, v) = Auy'v' + x2Buyxv' + a:4C,,t/V

+ xdDuy'v' + xsEi,y'v', (i, j = 0, 1, • • • ,6). (3.9)

The non-vanishing elements of square matrices Ai:- , Bu , C,-, , Du , A,,• , Bu , C,# ,
, En are listed below

426 = ~~B0i — = 32(5 4v)/3,

^46 = -J524 = C02 = *5.. = -£Ci3 = 8(1 + „)/9,

S-^55 ¥0 .B33 = 5C11 = 466 = T5 -S44 = 15 C22 ~ DOO = /3 ,

486 = TsBi4 — \~5C22 = ~~ D00 — 20O33 = = 4/3,

-Boe = 32(9 - 4. - 4/)/3, = -B46 = D02 = -[16(1 - k2) + 6(2 - v)/32],

B26 = -Coi = IC15 = -48(3 - 2, - 2k2),

B35 = -C13 = fC24 = 64(1 - ,2) + 24(2 - ,)/3\

BiS = 28 - 16^ - 8„2, |£55 = -^oC33 = |Ai

= —-B66 = TtCa = ~TtD22 = E00 = — (v -J- 3)(1 — v),
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Co, = -8(1 + v)(25 - 44, + 12,2)/3, (3.10)
= -C26 = /304 = 8(1 + ,)(7 - 7, - 2,2) + (47 - 44, - 4,2)/32,

|C24 = —4D02 = D13 = -16(7 - 4, - 2/)/3,

C26 = -Z>04 = iA» = 8(1 + ,)(7 - llv)p,

Dos = -506 = 8(1 + ,)2(4 - 10, + 4,2)/3,
i£>,3 = c,6 = = J?02 = 2(1 + ,)(6 - 7, - ,2),

iZ>i. = 526 = E0i = -(1 + ,)2(15 - 28, + 4,2), Boe = -64(5 - 4,)/?\

B2a = -CM = 64(1 - v2) + 24(1 - 2,)/32,

<?„. = 64(1 - ,2) + 8(31 -.46, + 4,2)(32,

C35 = 16(7 - 4, - 2,2), £06 = 2(1 + ,)3(3 - 2,)(1 - 2,),

Equations (3.9) relate the phase velocity v(x) and damping coefficient y(x) to the fre-
quency of harmonic waves x. Explicit expressions for y and v in terms of x could not be
found, so that recourse was made to numerical analysis for the determination of dis-
persion curves.

4. Discussion. It is important to determine an exact asymptotic values for v and y
when x —> °° and also an expansion at the point x = 0. For very high frequency waves,
x —> oo and equations (3.9) yield

D.jiyV = 0, (4.1)
Ei,y'v' = 0. (4.2)

It is easily seen that eq. (4.2) can be solved for v and the value of y can then be computed
from (4.1). Equation (4.2) is identical with the corresponding asymptotic frequency
equation for elastic waves (see Hunter and Johnson [3]). One of its three real roots has
a physical significance and is equal to

v, = [2(1 + ,)]"». (4.3)

In the dimensional form the asymptotic velocity is equal to the velocity of distortional
waves c\ = p/p and differs only slightly from the known expression for the velocity of
Rayleigh waves. From (4.3) and (4.1) we immediately determine the asymptotic value
of damping coefficient which is equal to y = 0. These results are of great importance
since they constitute a proof that the behaviour of elastic, visco-plastic bar at high
frequency harmonic wave is purely elastic.

The slope of the curves v(x) and y(x) can be found according to the formulae

'fx = ^ ~ LgMf.g. - dvi.r1, (4.4)

^ = to*/. - 1*g.)(f,g. - g»1X\ (4.5)
where indices x, y, and v denote partial differentiation.

On the other hand for x —> 0 (3.9) reduce to

A^y'v' = 0, Auy'v' = 0. (4.6)
It is found that lim x^0 v(x) = 0 and lim,_,o y(x) = 0, whereas the first derivative dv/dx
and dy/dx tend to infinity. This behaviour corresponds to the viscous dispersion for the
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Maxwell model. The zero phase velocity for x — 0 is explained by the fact that there is
no mechanism to transmit an infinitely long wave in the pre-stressed bar.

In the experiments on propagation of waves in bars the direct measurable quantity
is group velocity v„ = cjc0 rather than phase velocity v. The group velocity can be
found through the differentiation of function v(x), namely

va{x) = v(x)
I x

v dx. (4.7)

On account of formula (4.4) we have the following expression for the group velocity

l>e(x) = v{x) i - 7 (f,g. - gJv) \gyL - 1»g*)V (4.8)

(4.8) enables one to compute v, without a graphical differentiation of dispersion curve
which generally is not sufficiently accurate.

The constitutive equations (2.1) turn in the limiting case y0 —* 0 into the correspond-
ing relation describing the purely elastic material. The amplitude of elastic waves
suffers no damping and therefore we can assume ij = y = 0. By introducing y = (3 — 0
into the equations (3.9) it appears that the first equation (3.9) is satisfied identically
whereas the second equation yields an algebraic frequency equation derived earlier by
Hunter and Johnson (eq. (2.14) of the paper [3]). It is evident that for vanishingly small
viscosity constant 0 the curve y(x) would tend to the known Pochhammer-Chree dis-
persion curve.

5. Numerical Example. We consider a mild steel cylindrical bar of the radius
a = 1 cm. Coefficients in the frequency equations depend upon the Poisson ratio v and
constant /3 defined by (3.8). To compute 13 we assume the following values for material
constants representative for mild steel (Table 1). The system of equations (3.9) has been
solved numerically on the GIER electronic computer in the range 0 < x < 10, and the
results are plotted in Figs. 1 and 2. On the same figures dispersion curves corresponding to

v(x)

i.o

0.8

0.6

0.4

0.2

 FVesent solution (elastic/visco-plastic bar)
~ —Exact Pochhammer-Chree curve (elastic bar)
 Viscous dispersion curve (Maxwell model)
 Hunter & Johnson solution (plastic,work-hard, mater.)

0 1 2 3 4 5 S 7

Fig. 1. Phase velocity against frequency of harmonic waves.
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Table 1

E p k v y (3 rn
2,1 -106 7,8-10~6 2 • 103 0,3 148 0,1 rn

KG cm~2 KG cm~4 sec2 KG crrr2 — sec-1 — rn

purely geometrical and purely viscous dispersion are also shown. It is seen that the
curve v{x) reaches its maximum near x = 0.75, where the phase velocity differs by
a few percent from the value predicted by the one-dimensional theory. The results
of computations indicate that for very low frequencies the effect of viscous dispersion
is predominant. Starting from the value x = 0.5 the curve v(x) approaches the dis-
persion curve of Pochammer-Chree.

0 1 2 3 4 5 6 7

Fig. 2. Damping coefficient against frequency of harmonic waves.

This means that within the range of high frequencies the purely geometrical disper-
sion becomes more significant.

The plot of group velocity v„ against frequency, computed from (4.8) is shown in
Fig. 3. It is seen that va nowhere exceeds the value va = 1 except the very low frequencies
x —■* 0. This result would give a theoretical explanation of Sternglass and Stuart experi-
ments on copper strips [6] where the wave fronts of pulses were observed to travel at
the elastic velocity c0 whereas the overall pulse velocities were slightly smaller.
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Fig. 3. Group velocity against frequency of harmonic waves.
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