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SUFFICIENCY IN A DISCONTINUOUS VARIATIONAL PROBLEM
ALLOWING FOR CERTAIN BOUNDARY SUBARCS*

By G. T. McALLISTER (Lehigh University)

1. Introduction. Let 4>{x, y) be a sufficiently smooth function with 4>v ̂  0 for all
values of its argument. Let the regions R\ and be defined to consist of all points
(x, y) for which <j>{x, y) > 0 and <f> (x, y) < 0, respectively.

Let i+(x, y, w) and f~(x, y, w) be given functions that are twice continuously differenti-
able functions of their arguments. Let {xx , y^) and (x2 , y2) be given points in the plane.
We consider the following variational problem: Find the minimum of the functional

J(y) = f f(x, y, y') dx, (1)•'ii
where /(z, y, y') = fix, y, y') for (x, y) t R\ and /(x, y, y') = f'(x, y, y') for (x, y) e R;
among the class of functions in class (C1, D°), with corners only on the interface, and
which satisfy the end conditions y(xi) = yx , y(x2) = y2 ■

The problem of establishing necessary conditions and sufficient conditions was
first treated by Bliss and Mason [1], In that problem they assumed that the test curve
intersected the boundary in exactly one point. This paper shall consider sufficiency
when a test curve is allowed to have a subarc in common with the boundary <t>(x, y) — 0.

An example of a physical phenomenon in which this case arises is that of the passage
of light from one inhomogenous medium R\ into another medium . For certain
refraction indices, y), the light ray may have a subarc on the interface 4>(x, y) = 0.

It is to be observed that on the locus of discontinuity 4>(x, y) = 0 there is an ambiguity
as to the value of f(x, y, ?/'). However, if such a test curve is to render J (y) a minimum,
then it must do the same on any subinterval. In particular, along the boundary subarc
the value of f(x, y, y') must be taken to be such that

/O, y, y') = rnin \ f(x, y, y'), f(x, y, y')}, (2)

where (x, y, y') is an element belonging to the locus of discontinuity.
For ease of presentation the following terminology shall be introduced: A boundary

subarc belongs to f + means that for a subinterval of the abscissas of a boundary subarc
we have that min {/+, /"} = j* with the arguments of the functions the coordinates
in (x, y, y')-space of the subarc in question. In a similiar fashion we define a boundary
subarc belongs to /".

2. Sufficient conditions. It is clear from the preceding discussion that those points
(x0 , yo , y'0) belonging to the boundary subarc for which f+ = f~ are of special interest.
We shall call such points cross-over points. At such points a boundary subarc may go
from belonging to f + to one belonging to f~.

The following necessary conditions are easily derivable from Bliss and Mason [1]:
I. (1) For subarcs in R\ and R~^ the Euler equation is satisfied using f+ and /",

respectively.
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(2) At corners, on the boundary, we have

f - vM - f + y'-L~ = -v'-Vl - (3)
where the arguments of f+ and f~ are (x„ , y<t , yi) and (xa , yo, y~), respectively, with
yL and yl denoting the value of the slope before and after transition, respectively,
with 4>(x0, y0) = 0. Eq. (3) is for transition from an arc belonging to f~ to an arc belonging
to f.

(3) Along a boundary subarc of a test curve we must have

/ = min |/\ n
with the arguments belonging to the boundary subarc.

(4) For subarcs belonging to /+ or /" the Lagrange multipliers must satisfy X < 0
or X > 0, respectively. Moreover, entrance into the boundary (i.e., for an interval to
the right of the abscissa of contact the boundary belongs to /+) and exit from the boundary
(i.e., for an interval to the left of the abscissa of the exit point the boundary belongs
to /") require tangency.

IV. No point conjugate to (x^ , y,) lies between Xi and the first point of contact
with the interface. Similarly, there is no point conjugate to the last point of contact
and x2 .

The necessary Condition II of Weierstrass and Condition III of Legendre are also
derivable.

For sufficiency we modify Condition I (4) by requiring strict inequality in X and call
this Condition I (4'). Condition IV is modified, and called Condition IV', to include
the end-points. Condition III is modified to Condition III", i.e., f*,y, and f~,v, are never
zero for points (x, y, p), where p is arbitrary and y) = 0. It shall be assumed, for
definiteness, that these derivatives are positive.

We will now catalogue the basic types of transition. Let £x and £2 denote the abscissa
of the first and last contact points with the boundary. Let 17 denote a crossover point,
£1 < V < £2 • We shall assume that Rcontains (xx , y,) and R\ contains (x2 , y2)- The
following transitions are representative:

(<*) The test curve enters the boundary at ^ , has a crossover point at tj > £1 ,
and exists from the boundary at £2 > y.

(/3) The test curve intersects the boundary at £x , belongs to f+ and exists at £2 .
More complicated transitions are possible but they will be variations of the cases

that are treated above.
A theorem, basic to a proof of sufficiency, will now be stated and proved for case (a):
Theorem. Let Conditions 1(1), 1(2), 1(3), 1(4'), and II be satisfied. Let III" hold

for all (x, y) such that <f>(x, y) — 0 and Xi < x < x2 ■ Then there exists a field in a neigh-
borhood of a test curve that contains a boundary subarc.

Prooj. In Fig. 1, the curves Cf, , , C~ , and C+v are subarcs of extremals of f*
or /", depending 011 whether they lie in R\ or R~,j , respectively, that are tangent to
<t>(x, y) = 0 with the indicated initial points and the indicated directions. The curves
C\ and C4 are region extremals. The curves C2 and C3 are the boundary subarcs before
and after crossover, respectively.

A neighborhood, in , of the composite C, and C2(extending to C~) may be simply
covered by extremals of /+. The region between C(l and C'~ is covered by extremals of
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<Mx,y) = 0
Fig. 1

/+ issuing from C2 on a tangent. That this covering exists and is simple was proved
in Bliss [2],

A neighborhood, in R\ , of C2 between a point near (£, ?/(£)) and C* will be covered
by extremals issuing from the boundary with slope yl given by a solution to Eq. (3)
when we take yl as the slope of y) at the point considered. That such solutions
to Eq. (3) exist must be proved.

Let us take a point (x0 , y0) on the boundary such that the boundary slope yl = 0.
This may be accomplished by a simple rotation. Then Eq. (3) becomes

V(v) ~ pti(p) = f(0) (4)
where p = yl. The derivative of the left-hand side of Eq. (4) is equal to — pf*B. Condition
III" and continuity shows that the left-hand side of Eq. (4) assumes all values. Hence,
Eq. (4) has at least one solution. Eq. (4) represents a line tangent to the graph of f+(p)
and passing through the point (0, /"(0)). By Condition III", there will be at most two
such tangents. Two tangents will exist when (0, /+(0)) is not on or above the graph
of /+(p); only one tangent will occur when (0, /"(0)) is oil the graph of f+(p). Of the
two possible choices only one will bring an extremal into R1 .

Eq. (4) shows that yl will depend continuously on the coordinates of a boundary
point (x, y). Hence, yl approaches the slope of C, as the coordinates of the boundary
approach the cross-over point.

We must now show that this covering is simple. We first observe that the coordinates
of the boundary points and the slope of the boundary at those points may be made to
depend, in a continuously differentiable way on a parameter /u. Then the solution to
the Euler equation for /" may be written as yl{x, n) with yl(n, n) a solution of Eq. (4).
Now dyl/dn, at x = ju, is non-zero, by 1(4'). Hence, continuity considerations give a
simply covered neighborhood of C2 in R\ .

In a similar fashion a neighborhood of C3 in R\ is covered by extremals issuing from C3
with the direction of the tangent to C3 . The strengthened Jacobi condition insures
that this will simply cover C4 and will extend to a neighborhood of the point of contact
of C4 and the interface. A neighborhood of C3 in /i'~ is covered by extremals issuing
from C3 with slope satisfying the corner condition.
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Remarks. (1) In case (J3) there is no simple covering, unless /+ and f~ satisfy very
special conditions. The reason for this is that any extremal close to the test curve will
not have a solution of Eq. (4) given by the slope of the boundary at the point of inter-
section. Hence it must continue into the other region with a slope not tangent to the
boundary. However, if we are to leave the boundary, at a point after initial contact,
then we must leave on a tangent. Therefore, there is no unique way for an extremal to
go to any point in the neighborhood of the boundary in the region R\ . Such situations
must simply be compared with extremals that satisfy the boundary conditions and
contain no boundary subarc.

(2) The entire discussion of boundary subarcs is eliminated if one assumes that
f+(x, y, p) 5^ f~(x, y, p), where < x < £2 , <t>(x, y) = 0, and p is arbitrary. This is
certainly the situation when light passes from one homogenous medium into another.

In order to complete a discussion of sufficiency, it must be shown that the composite
curve Ct , C2 , C3 , and C4 , to be denoted by C, renders J(y) a minimum among all
curves in the neighborhood which was constructed in the last theorem. This will be
accomplished by extending the method of Weierstrass as developed in Bliss [2],

Theorem 2. If t he assumpt ions of the last theorem are satisfied and if the Weierstrass
i?-functions are positive in their respective sides of the boundary then any curve V
satisfying the boundary conditions and lying in the neighborhood of C satisfies the
relation

J(V) > J(C).
Proof. Let V be a curve in the R~,~p portion of the neighborhood constructed above.

Let the graph of V be given by y = g{x). Assume that V intersects the boundary at a
point ££ > V, the case ££ < ri has been treated in Bliss [2], Let the boundary be given
by y = p(x).

We define a function W(x') given by

W(x') = J„(C) + J XV), (5)
where p is the slope function of a point with abscissa x', lying on V, and JV(C) is an
integral along C leaving the boundary at £, /?(£), on the extremal that intersects V at
(x', g(x')); Jv(V) has a similar meaning. Differentiation of (5) with respect to x' leads to

=[r(x' w -r(x'y+'y')]~< I7 +17 d~tj;Ax■y+'y,+)
dp. dy'+ . ,.^~iAx,y+,y+) + lf(x, y+ , y'+) - f(x, g, g')]z.r- , (6)

x = £

where m is the parameter introduced in the last theorem. Observing that dn/dx', at
x = ju, is 1, we obtain

dW . ,= ~h(x, y, y+ , y+ , g, g) E(x, y, y+ , y\ , p, p') (7)
x = £

where E is the Weierstrass /^-function; the expression (7) is obtained by combining the
second and fourth terms of Eq. (6), and the first and third terms of Eq. (6).
Our hypothesis shows that dW/dx' is decreasing.

The exceptional cases are treated as in Bliss [2].
The same treatment extends to a discussion of the region about C in R\ .
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