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DIRECTIVITY FOR SCALAR RADIATION*

By J. L. SYNGE (Dublin Institute for Advanced Studies)

How is the energy radiated from a source to be concentrated into a narrow beam?
This is the problem of directivity [1], Directivity is obtained in practice by the use of a
reflector or horn. But such a device is not very different from supplementing the original
source by the addition of image-sources, and it seems of interest to look into the case
where there is no reflector or horn, but only point-sources of radiation, acting inde-
pendently. If the positions of such point-sources are given, and an assigned frequency,
we have at our disposal, in order to obtain a directed beam, only the amplitudes and
phases of the source. How should these be chosen in order to maximise directivity in
some assigned direction? It is the purpose of this paper to examine that question for scalar
radiation. However, it must be realised that, although we have a common qualitative
understanding of the meaning of the word directivity (the radiated energy is concentrated
in a narrow beam), when it comes to a quantitative definition (so that we can say that
one beam is more concentrated than another) one has a certain discretion regarding the
suitable definition. Schelkunoff and Friis (op. cit. p. 179) define directivity as the ratio
of maximum to average radiation intensity; I define it in a different way.

Consider a set of point-sources at positions P„ (n = 1,2, • • • N). Let V be the re-
sulting radiation field, satisfying

AV — c~2 d2V/df = 0. (1)

Let us use units for which c = 1. The vector representing flux of energy is

F = -(dV/dt) grad V. (2)

Then on a large sphere there is a scalar field of density of energy-flux across the sphere,
namely F, , the normal component of F. Our aim is to choose the amplitudes and phases
of the sources so that the distribution of F, is concentrated in the neighbourhood of
some point on the sphere.

Restricting the argument to simple harmonic sources with circular frequency u,
we represent the source at Pn by

<r„ exp (iut) + a* exp ( — iut), (3)

where an is a complex constant describing the amplitude and phase of the source. Then
the field V at position P and time t, due to this source, is Vn — Wn + W* where

Wn(P, t) = PPnT1 exp Mt - PPn). (4)

Let 0 be the origin and R = OP; then

ppl = R2 - 20P OP,. + OPl , (5)
and so, for large R,

PP„ = R - OP„ I + 0(/r'), (6)
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where I is the unit vector OP//?. Accordingly (4) gives

Wn(P, t) = -<rn(4mRy1 exp Ut - R + OPn-1) + 0(R~2), (7)

and the total complex field due to all the sources is

W(P, t) = £ Wn(P, t). (8)
n = l

From (2) it follows that the time-average of normal flux-density at any point on
the sphere R = const, is

(F,) = —iu(W dW*/dR - W* dW/dR). (9)
By (7) and (8) this is

(F„) = C02(167r2i22)-1 £ a*mAmn<rn + 0(R~3), (10)
m , n -1

where is the Hermitean matrix

= exp toP,„„-1, (11)

with

Pmn = OP„ - OP,„ , (12)

the position vector of P„ relative to Pm .
Integrating (10) over the infinite sphere, we get for the total flux

Q = J (F,) dS = a*Qmnan , (13)

where Qm„ is the real symmetric matrix

Qmn = sin (uPmn)/(u>Pmn), (14)

involving the distances between the sources, made dimensionless by the factor to.
To discuss directivity, let us define the moment of the flux through the infinite

sphere as

M = f (1 - cos e) (F.) dS, (15)

where dS = R' sin 6 dd d<f>, 6 and 0 being polar angles with 0 = 0 in the direction in which
concentration is sought. There is of course some arbitrariness in this choice of definition
of moment, but the factor (1 — cos 6) seems the simplest available; what we need is a
factor vanishing for 0 = 0 and positive for all other values of 6.

We now define the directivity to be

D = Q/M. (16)
Thus D is large if the beam is highly concentrated near 6 = 0.

From (10) and (15) we obtain for the moment

M = cAIOttV1 Z vtMmn<rn , (17)
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where Mm„ is the Hermitean matrix

Mmn = J (1 — cos 9) exp (io)Pm„ • I) dQ, (18)

with dQ, = sin 9 dd d<j> and I = (sin 9 cos 4>, sin 9 sin <£, cos 9).
The problem of maximising the directivity D is therefore the problem of minimising

the quotient of two Hermitean quadratic forms:

M «?, rll.A d Md

^ Y1 *n

The minimum value of D '. for given positions Pn and a given circular frequency u>,
is therefore the smallest root of the equation

det (M - XQ) = 0, (20)
i.e., the smallest eigenvalue X given by the equations

Md = XQd, (21)
and the minimising amplitudes and phases of the sources are given by the corresponding
vector <S.

One could push the matter a little further by expressing the matrix M, as given in
(18), in terms of Bessel functions. But that is not important, because formal mathematics
cannot really be expected to carry us much further. The minimising of the quotient
(19) demands numerical calculation, and it does not seem to matter much how M is
expressed. Given a lattice of sources and a circular frequency «, we are to try experi-
mentally to reduce the quotient (19) as far as possible by the choice of the complex
vector »J. Having thus obtained an experimental minimum, we should do the whole
thing over again for various values of w in order to minimise the minimum, and when
that has been done, we should try to reduce the minimum still further by changing the
lattice. In fact, the present paper does not offer a solution of the problem of directivity;
its aim is rather to present a systematic approach as a basis for numerical calculations.
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