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A CORRELATION RESULT FOR N ON STATIONARY INPUTS*

J. L. BROWN, Jr.
(iOrdnance Research Laboratory, The Pennsylvania State University)

1. Introduction. In [1], K. S. Miller obtained an expression for the mean-square
output of a linear time-invariant filter subjected to a nonstationary random input,
y(t) = g(t)x(t), where x(t) is a wide-sense stationary random process and g(t) is a de-
terministic function of the particular form

N

g(t) = X an COS (a! J + <j>n) . (1)
n = 1

The purpose of this note is to generalize Miller's result in two directions; we shall con-
sider arbitrary modulation functions g{t) and also obtain an expression for the general
output autocorrelation function

4>Xh , h) = SK/iMO],
where z(t) is the output corresponding to the input y(t) = g(t)x(t). The mean-square
output is then easily obtained by taking tx = t2 = t. Since Miller's formula is immediate
on further specialization of the modulation function, the general analysis affords as a
by-product a much simpler proof of the result in [1], In the concluding section, a rec-
iprocity theorem is proved which shows that the mean-square output of a linear filter
is invariant with respect to an interchange of the impulse response hit) and the modu-
lation function git).

In addition to the application suggested by Miller [1], we note that reverberation
noise is commonly modeled [2] in the form g(t)x(t), where g(l) represents the time-
varying decay characteristic of the reverberation and x(t) is a stationary random process.
Thus, nonstationary noises of the more general type considered here are involved in
the analysis of sonar detection systems operating in a reverberation-limited environ-
ment.

2. Analysis. Let y(t) = g{t)x{t) denote the input to a linear time-invariant system
with impulse response h(t), so that the output z(t) is given by

2(0 = J ^h(t - £)y(£) d£. (2)

We assume both hit) and git) are real-valued with g{t) uniformly bounded on
(—oo, co) and hit) in the class Li H i2 on (- <»); that is, h{t) is square integrable
and corresponds to a stable filter so that it is also absolutely integrable. The real-valued
random process x{t) is assumed wide-sense stationary with square integrable auto-
correlation function <k(r) = E[x(t)x(t + r)] and related power spectral density Sx(w).

Using (2) and noting that E[y(£)y(v)] = g(£)g(r,)<f>x{$ - i>),

Uu , k) = E[z(tMt2)] = /_ /ra hiu ~ mi, - f - v) d{dv. (.3)
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We next define a function B(o>, t) as follows:

B(u>, t) = J h(t — £)g(£)e ,£™ d£. (4)

Then, by Parseval's theorem [3], the ^-integration in (3) becomes

/" Kk - - v) dt = ^ /" B(«, f/co

and the remaining ^-integration yields

<t>Xh . ^2) = ^ QSM dw, (5)

where an asterisk superscript denotes complex conjugate. Equation (5) with B(o, <)
given by (4) is the main result of this section. For /, = t2 = t, equations (4) and (5)
specialize to

E[z\t)] = ~ J" |B(w, 0|2 &(.) <&o, (6)

which is the desired extension of Miller's result to arbitrary bounded modulation func-
tions git).

If, in addition, g(t) t L2 on (— &, °o), then by Parseval's theorem applied to (4),
we have

B(u, t) = £ J[ H(V)G(V + coy" (?)

where i/(co) and G{io) are the (L2) Fourier transforms of hit) and g(t) respectively.
Equation (6) may then be written equivalently in terms of the spectra:

Em] = ~3 r r h(v)g(v ~ coy dv 2
O il «/ — 00 I — CO

S,(<a) c?«. (8)

3. Miller's Theorem. To see that (6) contains the previous result [1] as a special
case, we consider git) to have the particular form

N

9(0 = an COS (wj + <f>n) ;
n = 1

then from (4),

B(-u, t) = \ £ a„ f hit - £)[e<(»»£+*") + ^
^ n=« 1 J —co rot

= y'IMio:) + M*(-co)],

where we have followed Miller in defining

M{a) = £ aj?(« + .
n = 1

Then, noting that Bi — u,t) = Z?*(co, t), substitute (9) in (6) to obtain

E[zit)} = ~ /" |M(co) + il/*(-co)|2 Sz(«) dcO,

which is easily seen to be the equivalent of Miller's formula (equation (4) in [1]).
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4. Reciprocity Theorem. In this section we require g{t) [as well as hit)} to belong
to Li L2 on (— oo; co). An obvious change of variable coupled with the observation
that SJu) is an even function allows us to write (8) in the alternate form:

E[z\t)] = jfa f f H(v)G(v + coy" dv
07T J — oo | «/ — oo

= a r I r Hm - adi
07T J — oo \ J — co

SM dco
(10)

Sx(u) dw.

Rearranging the latter expression and changing the dummy variable back to rj, we
have

E[z\t)] f G(v)H(v - co)e"' dr,
07T J — oo v — co

2

S,(«) rfco. (11)

Comparison of (8) and (11) proves the following reciprocity result:
Let x{t) be a wide-sense stationary random process with square integrable power

spectral density Sx(u). If hit) and g(t) are two given real-valued functions in Lx C\ L2 on
(— co} co), then the mean-square output of a time-invariant linear filter with impulse
response h(t) and input y(t) = g{t)x(t) is exactly the same as the mean-square output of a
linear system with impulse response g(t) and input y(t) = h(L)x(t).

Thus, the mean-square output of a linear system is invariant with respect to an
interchange in roles of the impulse response hit) and the modulation function git).

Lastly, we observe that the time dependent spectral density W(t, co) defined by

W(t, co) = J" <^(/, t + r)e_,'"T

can be calculated from (5) to give the following result:

W{t, Co) = [ B{a, /)G(co - a)SM) doc. (12)
j-iTT J -co

This formula generalizes equation (16) of Miller's paper [1] and can easily be shown
to reduce to that result when g(l) = a„ cos (coj + </>„). For the special case,

N

G(oi) = x a„[e'*"5(co — &>„) + e~'*"8(a> + co„)],
n = 1

where 5(co) is the delta functional and B(a, t) in (12) is given by (e~'at/2)[M ( —a)+M*(a)l
from equation (9).
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