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EXISTENCE OF CONDITIONALLY PERIODIC ORBITS FOR THE MOTION
OF A SATELLITE AROUND THE OBLATE EARTH*

BY

RICHARD BARRAR
System Development Corporation, Santa Monica, California

Abstract. The author's previous results on the convergence of the Poincare-von
Zeipel procedure in celestial mechanics are applied to the problem of the motion of a
satellite around the oblate earth. The investigation concerns a potential that can vary
both longitudinally and latitudinally, and also includes behavior near the critical angle.
The existence of conditionally periodic orbits in all these cases is established.

Introduction. This paper shows the existence of conditionally periodic orbits for
the motion of a satellite around the oblate earth.

W. T. Kyner [10] and C. Conley [4] have treated this question on the basis of the
Moser [11] theorem on invariant curves of an area-preserving mapping of an annulus
onto itself.

The method of proof of the present paper is based on Barrar [1], which proves the
convergence of the Poincare-von Zeipel procedure. This permits the investigation of a
potential that can vary both longitudinally and latitudinally, and the investigation
of the behavior near the critical inclination.

Moreover, although the approach is different, the present paper offers a mathematical
justification for the procedure used by Brouwer in [2] away from the critical angle
and by Hori in [7] near the critical angle; at least for sufficiently small J2 •

In the present paper we wish to apply the theorem proved in [1] to the oblate earth
problem. The theorem has the following form for two degrees of freedom and there
is no difficulty in extending it to n degrees of freedom.

Existence Theorem 1. Consider a Hamiltonian of the form:

H = .Ho(Pi) + m[#i(Pi , P2) + H2(p 1 , p2 , , g2)] with 0 < n < 1, (HI)

and corresponding differential equations

f-g. $-"£• <H2)
where all junctions are assumed to be analytic, and II2 is periodic of period 2ir in qt and q2.

Now for two fixed values p\ and pi , let

_ d(H0 + nH,)
Xl ~ dPl

^ - ?E±
2 _ a-v.op 2

satisfy,** for some 8 > 0,

ni + n2 —
«i

> 2 for all integers nt and n2 with n2 ^ 0. (H3)
(n2)

*Received March 3, 1965; revised manuscript received July 21, 1965.
**For 0 < (X2/X1) < M the exterior measure of all (X2/Xi) not satisfying (H3) is less than (4ir2/3)M/i8

(see Siegel [13]).
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Further, for all n in some neighborhood oj /u0 , with 0 < jxn < 1, let

det d2(H„ + fill l)
dp, dpi = 2Nn ^ 0. (H4)

Then for \H2\ < e(5, N), and for n in the above neighborhood, there is a conditionally periodic
solution of (1) of the form:

g, = X,(/ — Tt) + 0i(e,x"', e'"Xl')>

q2 = — r2) + 02(e'x*', e'"Xa'),

Pi = Ai + e'"x°')>

where A, and r, are constants.
The oblate earth problem. In terms of suitably chosen units, the gravitational

potential of the earth may be put in the form:

F= r 1 - Z) Jv \ P„(cos e) — 2 P;(cos
p=2 T p = 2 m=—p r

0

(1)

where the unit of length is the earth's equatorial radius, and r, 6 and </> are standard
spherical coordinates; Jv and Jpm are constants determined by the mass and the shape
of the earth; and Pv and P™ are spherical harmonics.

Since it is assumed that this development is about the earth's center of mass, one
sets Ji = 0, Ji„ = 0.

It has been found experimentally that J2~ 1 X 10 ' and the sum of all the other
terms in the infinite sum is ^1 X 10~6.

We shall begin our investigations with a discussion of the motion resulting from
the potential

v _1 , J2P2(cos 6) ./,P4(cos e)

because this potential brings out all the essential features of the problem; later we will
discuss the general potential (1). For convenience, let us set J2 = e; then J4 = 0{t).

In terms of the standard Delaunay canonical variables,

Pi = \/a (a = semi-major axis), mean anomaly,

p2 = p,(l — e2)1/2 (e = eccentricity), q2 = argument of perigee,

V3 — P2 cos I (/ = inclination), q3 = longitude of ascending node,

and using the spherical trigonometric identity cos 6 = sin I sin (q2 + /) with f the
true anomaly, the Hamiltonian H for the potential (2) has the form:*

H = F0(Pi) + e[Fi(pi , V2 . V-d + F-iiPi ,p2 ,p3 , qi , g2)] + e2F(p1 , p2 , p., , ql , q2),

W = 2^ ,

*In Eq. (3) and throughout the remainder of this paper we use the notation that F{pi, p2, ps, </i , ?•>)
is an analytic function of all its variables, and is periodic of period 2ir in qi and q2 .
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1
FiiPi > V-2 , Ps) _A + 3 (pjf2 2 \pJ

FziPi , Vi . Z>3 , q, , q2) = ;

2(p,p2)' L 2 2 Vp2/ _

1
2(p0

1

[-1 + 1 (£)*][(;)' -feT
+2 (p,)"

W JLW W

l"lfe)](°) c»<2«- + 2«
= X Ani(pi , p2 , p3) cos (nlql)-\-B„l(pl , p2 , p3) cos (ni?1+2g2).

ni^O

For details, see Brouwer [2] or Brouwer and Clemence [3, pp. 562-573]. The general
method of introducing the Delaunay canonical variables into a problem with a potential
of the form (1) or (2) is developed in Smart [13, Chapters 9-11], and Brouwer
and Clemence [3, Chapter XI, §9], In (3), we have explicitly written out only the pertur-
bation term J2P2 (cos d)/r3.

Since

e - (' - if) ) ' cos' " Pv, ■ (4>
it follows that for the motion to be bounded with 0 < e < 1, — ir < I < x, we must
restrict ourselves to regions where

0 <P3<P2<P!. (5)

From the identity resulting from conservation of angular momentum,

% - - (£)'<■
+ e cos /)2,

it readily follows that (/ — 5,) is an analytic and periodic function of 31 in a strip in
the complex 4,-plane surrounding the real gj-axis with the width of the strip depending
on e. By the equation of an ellipse in polar coordinates,

= (|) (1 + e cos /),
a
r \p2 (6)

this also applies to (a/r). The actual development of cos / and sin / in terms of cos
and sin qx are well known (see Smart [13, p. 41]). From these remarks, we deduce the
validity of the expansion in (3). It is shown in Brouwer [2, p. 379] that no term n, = 0
appears in the expansion of F2 ■

Thus, if we stay in neighborhoods

N0 : \V<-V°i\<ai, (7)

1 — £0 < W' | < 1 + lo
for sufficiently small a{ , £0 ; and the constants p'[ satisfying (5); all functions will be
analytic. We assume this to be always fulfilled in what follows.

For completeness we remark that if \p = 1p(/p1 , p2 , p3 , , q2) = ^(a, e, /, g, , q2),
one has the identities:

dip _ 1 d\p (p2)2 d\p _ _1_ djp p2
dp, e de (p^3 ' dp2 e de (p^ (8)
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Moreover, in the term F2 of the Hamiltonian (3) one has for small e the readily established
expansions:

= (1 + 3e cos q,) + 0(e ) (9)
\ I /

and

cos (2q2 + 2/) = cos (25, + 2q2) — 4e sin (2qy + 2q2) sin qx + 0(e2).

Hence, it follows from (8) and (9) that as e —> 0, the canonical differential equations
(H2) become meaningless. For this reason, we must restrict to values of e bounded
away from zero.

It should be mentioned, however, that Poincare has developed methods for dealing
with this type of difficulty. More is required than the mere introduction of Poincare
variables, because with Poincare variables the Hamiltonian is no longer of the correct
form for our Existence Theorem 1 to apply. Rather, using the method developed in
Poincar6 [12, Chapter XII], it can be shown that if one makes a canonical transformation
using the so-called Poincare periodic orbits of the first kind, the singularity at e = 0
may be removed. We hope to return to this point in a future paper. In the present
paper, we shall always assume that e is bounded away from zero.

Since we have restricted to the potential (2), the variable q3 does not enter into
the development (3). It then follows from the canonical differential equations (H2)
that p3 is a constant. Thus, we consider only the four variables pi , p2 , qi and q2 . In
a later section of the paper we shall indicate the changes that should be made to consider
also the variables p3 and q3 and the more general potential (1).

Existence of conditionally periodic orbits away from the critical angle. We wish now
to transform the Hamiltonian (3) to the form:

H = F0(P,) + eF^P, , P2) + tF(Pj , P2 , Qi , Q2 , e) (10)

so that we can apply our Existence Theorem 1 on conditionally periodic orbits.
In essence this means that we want to get rid of the term eF2 of (3) and replace

it by something of order 0(e2). It was for just this purpose that the Poincare-von Zeipel
transformation was developed (see Poincare [12, §125]). Since F2 contains no term
rii = 0, the transformation reduces to the following canonical transformation from
(;p, q) to (P, Q) by means of the generating function W:

with
W = Plql + P2q2 + e£(Pi , P2 , ql , q2)

S = CP,)3 / F*(.Pi ■ P> . 9. . <?*) dQl or || + P2(P. , ?,) = 0,

n . dS n dS
Vi = Pi + €d^r Qi = qi + eWr z = 1-2-

(id

Brouwer [2] has explicitly calculated S. It is clearly an analytic function of all its vari-
ables, and periodic of period 2tt in qx and q2 . The rationale for the introduction of S is
indicated in the discussion below (12).

It now follows, by methods exactly analogous to our proof of Lemma 1 of [1], that
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for sufficiently small e, the transformation W may be written as

pt = P, + L,(P, Q), q, = Q, + K{(P, Q),
where Li and A', are periodic of period 2tt in Q! and Q2 ; it also follows that L{ and K,
are defined in a region

Nt : |P. - P°| < b< , 1 - & < |e<0'| < 1 + {„
and that they map this region iV, into the region N0 of (7). Hence from now on we may
restrict ourselves to the region Ni . In 2Vi the Hamiltonian has the form:

dqJ

F0(Pi) + tFx(Pj , P2) + «

+ <?F(pl , p2 , qt , q2)H ' F-(p< +eIf) + *WP' + 'B + F-(p'+'
+ r,(p,,qi)

dqx J (!2)

^ ,isfF-(p' + e0)(»s\- , + 'Alts]
+ 4 L2 dP? \dqj + dP; \dqj+ dP< \dqj_

+ t2F(j>! , p2 , q1 , q2), 0 < 6 < t.

(11) shows that the second term in « in (12) vanishes, and the discussion above
shows that the coefficients of all terms in t and higher are bounded. Therefore, our as-
sertion is established. With the Hamiltonian in the form (10), we can now apply Existence
Theorem 1. Let

X. = d(F0 + ePQ _ _J_ _ 3 1/1,3 (P,V\ , _ 3 1 /. JPX\
dP, Pi 2 e P\Pl \ 2 + 2 \pj /' € 2 4 e P\Pl \ \pj r

Then for P° , P° and P3 that satisfy:

InAi + n2e\2| > ^ , rij and n2 integers, n2 ^ 0, (A)
TI2

det a2(P0 + eF,)
dP* dP, Ae > 0, (B)

and for sufficiently small e, it follows from Existence Theorem 1 that there will exist
conditionally periodic solutions of the equations of motion corresponding to the
Hamiltonian (3). These solutions will be of the form:

9i = Xi(/ — rj) + <t>i(e'Xx>, q2 = i\2{t — t2) + ^2(e')"', e"x''),

Pl = A, + ^(e'x", ei,x"), P2 = + Ue^',e^").

Condition (B) can always be fulfilled even though, as the Hamiltonian is now written,
the condition is not met at one point; namely, because d2(F0 + eF1)/dP2dP2 =
(3e/2PiP2)(2-15(P3/P2)2), condition (B) is not met at cos21 = ~rg. However, by squaring
the Hamiltonian (as suggested by Poincar6 [12, §43] for a slightly different case), and
considering the resulting equivalent Hamiltonian at cos2 I = A, it is readily found
that condition (B) is now met.

However, condition (A) cannot always be fulfilled. At cos2 I = §, the frequency
X2 = 0, so Existence Theorem 1 no longer applies. This is the so-called critical inclination.
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The next section of this paper is devoted to studying the phenomena very near this
angle. However, the discussion above shows that away from the critical inclination
the assumptions of Existence Theorem 1 are met, assuring conditionally periodic orbits
for almost all frequencies, for small enough e.

The critical inclination angle. We now wish to introduce a series of canonical trans-
formations that will transform the Ilamiltonian near the critical inclination angle into
a form where Existence Theorem 1 may be applied.

The motivation for this series of transformations is found in Poincare [12, §206].
(For a discussion of the involved physical phenomena that occur near the critical angle,
the reader is referred to Poincare [12, §§199, 200] and Hagihara [6].)

In essence, the series of canonical transformations that we now introduce, replaces
the old canonical variables by a new set of canonical variables that are uniformizing
in a sense made clear below. At the present state in our development the Hamiltonian
(10) has the form:

II = F0(p,) + eFi(z>i , p2) + t[F'n{Vi - Pi) + F22(p, , p2) COS 2q2 + F23(p, , p2 , , q2)]

+ e"F(pi ,p2,(h , q2 , e), (14)

where we have changed P and Q back to p and q. The exact form of the terms F0, F, , F2l
and F22 are given in Hori [7, Eq. (6)].

Let p" be fixed values at the critical angle cos2 I = §. At this angle it follows from
the form of F0 and that the following equation holds:

dF\
dp!

d2Ft
Opt dpi

, n d(F0 + eFj)= m2 ^ 0, r 
dp 2 0, fldp i

= ® An , A22 not vanishing.

X, ^ 0,
(15)

The canonical transformations. To remove the difficulty caused by X2 = 0, we now
introduce a series of three canonical transformations, of which only the first is non-trivial.

The first transformation p, q —> u, v is accomplished by means of the generating
function:

W = pj?1 + p\q2 + VeT, + e2T2 ,

= u1ql + J dq2(u2 - , (16)

T2 = f dqiF23(p°l ,p°2 , qi , q>)
III2 *

with \p being defined by

hA22ip — F2i -J- F22 cos 2^2 t (17)

where we abbreviate

F2i = F21(p1 ,p°2), F22 = F22(pl , pi).

Although the details are rather messy, by imitating our procedure in the expansion
of Eq. (12), though now expanding in powers of y/e, we can proceed in a straight-
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forward fashion to find that in terms of the new canonical variables, the Hamiltonian
is of the form:

H = F0(p1) + Vdl* (18)

with
H* = Giiit,) + tn\A22u2 + e2F(Ui ,u2 , qi , q2 , e)

and
GiM = mLuL + 0(\/e).

Further, in terms of the new Hamiltonian, dH/du2 = e3/2 A22/2 ^ 0. This means the
critical angle difficulty has disappeared. However, H is not periodic of period 2ir in
the angular variables v1 and v2 as follows from the change of variable equations:

dW / dW , / f dq,
Vl ~ dq, ~ ^tQl ' V2 ~ du2 ~ 5A/e J (u2 - i)w2' (19)

The second transformation is rather trivial, it replaces v, by z, = v,/\/1. To see
that this is canonical, note that since F0(p°) is a constant, it follows from the canonical
equations for and v, with respect to H, that iu and zt are canonical variables with
respect to H*.

Further, this second transformation replaces the second equation of (19) by the
elliptic integral

Z2 = ll (u2 - V)1/2' (20)
Thus q2 is an elliptic function of z2 . The parameter k of the elliptic function depends

on the constants F21 and F22 and on u2. Let us merely summarize the various phenomena
that can take place, when to a first approximation we assume u2 is constant.

Case 1. 0 < fc2 < 1.
Here q2 increases by 2ir when z2 increases by a period P{u2). This is the case that

occurs away from the critical angle. A special subcase of this also occurs in the potential
used by Vinti [16], for then k2 = 0, as has been pointed out by Hori [7] and Izsak [8],

Case 2. fc2 > 1.
Here for real z2 , q2 is bounded between two finite limits, and oscillates between

them as z2 continually increases. This is the phenomena of libration in celestial mechanics
(see Hori [7], Garfinkel [5]) and also shows why we refer to z2 as a uniformizing variable.

Case 3. fc2 < 0.
Here once again q2 is a periodic function of z2 , with period P{u2). In the case of

the oblate earth, if one considers only the term J2P2 (sin 6)/r3 and neglects J J\ (sin 6)/r5,
one is in Case 3, while if you do not neglect it you are in Case 2 with libration.

Finally, the case k2 = 1 will be discussed below.
The third transformation is also trivial. It is introduced so that in terms of the

final variables , P2 , Qi and (}■> the Hamiltonian will be of period 2x. It is

/-»     2-7rz2Qi — — Qi i Q2 —FM ' (21)

Pi — Wi , P2 ~ 2,1r I
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It readily follows that this is a canonical transformation, and since P(£) > 0, we also
have u2 = G2 (P2) with G'2(P2) 9* 0. Finally, the Hamiltonian H* in terms of the new
variables is of the form

H = GiiPt) + t3/^A22G2(P2) + e2F(P, , P2 , Q, , Q2 , «). (22)

Thus in terms of the new variables all conditions of Existence Theorem 1 are fulfilled
and we obtain the existence of conditionally periodic motions, for small enough e. By
using the transformation formulas (16), (20), and (21), the motion in terms of p, and
is of the form:

qt = X,(/ - r) + /ii(e'x'\ e""'*'1),

q2 = /^2(e^x'V,/°X,,),

p( = At + li(eiXx', e"*/'x"')

near the critical angle, which corresponds to libration.
There is one other case that occurs, which we have not considered. Namely, as

fc2 —» 1, the integral (20) approaches log (tan (q2/2) + x/4); this is equivalent to saying
that the period P(u2) approaches infinity, and thus the transformation (21) is not
defined. This case is exactly on the border line between the libration case and the usual
case of revolution. In essence this corresponds to a critical angle in the new (Pi , P, ,
Qi , Q2) variables, since now dG2{P2)/dP2 = 0.

Poincar6 [12, §§207-210 and §§215-217] indicates how to treat this general situation.
One defines a new canonical transformation by using the periodic solution that occurs
at the critical angle in the new (P, , P2 , Q, , Q2) variables. The author hopes to return
to this problem in a future paper.

Generalization. Let us now consider the general potential (1) and the resulting mo-
tion. Since J2 is still the only term of 0(e), it is still valid to introduce the transformation
(11) to obtain a Hamiltonian of the form:

H = FoCP,) + cFiOi , p2 , Pi) + e2F(Pi , P2 , Pa , Si , ?2 , & > «)• (23)

It follows from (3) that dFi/dPz = X3 > 0 in the case of the oblate earth (corresponding
to precession of the node). Hence, away from the critical angle, the three-degree-of-
freedom analogue of Existence Theorem 1 shows that for frequencies , e\2, eX3 such that

|n,X. + rMX2 + n3e\31 > (n? + Je+

there will be conditionally periodic orbits of the form:

9, = X,(/ - r.) + /1(e,x,<, e"Xl', e"x,')i

q, = - Tl) + /2(e,x,<, e"Xa!, e"x,<).

q3 = e\3(t - t,) + /3(e,x",eitx",e<'x"))

Vi = At + <7,(e'x'Vx",eieX").

(24)

At the critical inclination, X2 = 0; it therefore becomes necessary to study the terms
of 0(e) in the equation corresponding to (14). In our previous discussion, where we
consider only J2 and ./4 , we had terms of the form C\(I\ , P2 , P3) and C2(Pi , P2 , P*)
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cos 2Q2 . If one assumes there are other terms of 0(e2) in (1), then additional terms
must be considered at the critical angle. Thus when Kozai [9] also considered J3 as
0{t), he obtained an additional term C3(Pi , P2 , P3) sin Q2 . However, it follows from
the general theory of elliptic integrals that this additional term J3 will still result in
an elliptic integral and thus offers no essential new difficulty. If other terms must also
be considered, say, for example, J5 0(e2), the problem becomes more complicated.
The complete discussion would then involve the theory of the integration of algebraic
functions on a Riemann surface, or hyperelliptic functions see, e.g., G. Springer [15].
However, at the time of writing of this paper, it is generally agreed that all terms besides
J2 , J3 and J4 are insignificant. Overlooking this possible complication, we find by the
methods used in this paper that libration takes place near the critical inclination and
the orbits are of the form:

= ut - r) + h1(eix>,,eu'"u,,eux"),

q2 = h2(eiXt', e'e'/,x*', eu>"'), (25)

q3 = eX3(/ - r) + h3(e^', e""**'', e"*''),

Vi = + hi(eiXlt, eu'"x'1, e<ey"')

for almost all frequencies near the critical angle, and for sufficiently small e.
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