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VARIATIONAL PRINCIPLES IN THE LINEAR DYNAMIC
THEORY OF VISCOELASTICITY*

BY

MARSHALL J. LEITMAN
Brown University

1. Introduction. In a recent paper Gurtin [1] deduces variational principles which
characterize the standard initial-value problems of linear elastodynamics.

Here we extend** these principles to dynamic viscoelasticity theory.
Notational agreements and mathematical preliminaries are given in Section 2. In

Section 3 we formulate the initial-history problem for the dynamic linear theory of
viscoelasticity and deduce two equivalent characterizations of its solutions. These
alternate formulations, aside from being essential to the results presented here, are of
interest in themselves. In Sections 4 and 5 we prove three variational principles applicable
to the mixed boundary-value problem. The first of these is quite general and the ad-
missible states are required to satisfy only the initial history condition. In the second,
the admissible states, in addition, must satisfy the strain-displacement relations. The
third variational principle is concerned only with the stresses.

We allow the state history to be of infinite duration. Those cases for which the
history may be considered finite fall as a special case of the results presented. We also
remark that for histories of finite duration variational principles may be deduced which
have a simpler form. They will, however, require separate proof.

We do not, in this paper, give all the counterparts of the results in [1], since it is
clear from those presented how the others may be obtained.

2. Notation and mathematical preliminaries. We will try to use, whenever possible,
the notation developed in [1],

Indicial notation is used throughout. Thus, subscripts have the range of the integers
1, 2, 3 and denote the Cartesian components of vector- and tensor-valued functions;
summation over repeated subscripts is implied and subscripts preceded by a comma
indicate differentiation with respect to the corresponding Cartesian coordinate. Parenthe-
ses about a pair of free subscripts denote symmetry with respect to these subscripts,
e.g. «(,-,,■) = i(ui,i +

R is an open bounded region in three-dimensional Euclidean space with the closure
R° and boundary dR. Bu and B, denote disjoint sets whose union is dR and n{ is the
unit outward normal to dR. We write xt for a point of Rc and use the abbreviation
X = (Xi , x2 , x3).

A superscript indicates differentiation with respect to the time t.
Let / and g be scalar-valued functions defined on Rc X ( — °°, 00). Then the convo-

lution / * g is the function on Rc X [0, °°) defined by

/ * g(x, t) = f [/(;x, t - s)g(x, s)] ds, t > 0. (2.1)
•*0

* Received May 20, 1965; revised manuscript received August 30, 1965.
**The generalization to the quasi-static theory of linear viscoelastic materials has already been

carried out by Gurtin [2],
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We will have occasion to use Titchmarsh's Theorem:

j * g = 0 => either f = 0 or g = 0 for t > 0. (2.2)*

For convenience and clarity in presentation, all smoothness and regularity hy-
potheses on functions and regions are omitted.

We need the following four lemmas, which are trivial extensions of these given in
[1]. These lemmas play a role analogous to that of the fundamental lemma of the calculus
of variations.

Lemma 2.1 Let v be a sufficiently smooth junction on R X [0, <») and suppose

[ [v * w](a;, t) dx = 0, t > 0, (2.3)
•Ik

**

jor every arbitrarily smooth function u on Rc X [0, oo) which, together with all its space
derivatives, vanishes on dR X [0, oo) and on R at t — 0. Then

v = 0 on Rr X [0, oo). (2.4)

Lemma 2.2. Let v be sufficiently smooth on B\ X [0, °°) and suppose

f [v * w](x, t) dx = 0, t > 0, (2.5)
J B,

for every arbitrarily smooth function w which vanishes on Bu X [0, oo) and on R at t = 0.
Then

v = 0 on Bc, X [0, oo). (2.6)

Lemma 2.3. Let i\- be sufficiently smooth on Bcu X [0, oo) and suppose

f [Vi * (wiI-n1-)](a:, t) dx = 0, t > 0, (2.7)
J Bu

for every arbitrarily smooth symmetric tensor-valued function w,-; which, together with all its
space derivatives, vanishes on B, X [0, oo) and on R at t = 0. Then

Vi = 0 on Bcu X [0, oo). (2.8)

Lemma 2.4. Let vt be sufficiently smooth on B°, X [0, oo) and suppose

f [Vi * co,,-.,■](£, t) dx = 0, t > 0, (2.9)
J Bt

for every arbitrarily smooth symmetric tensor-valued function co,-that vanishes on R at
t = 0. Then

Vi = 0 onB\ X [0, oo). (2.10)

Finally, let Q{ ■} denote a linear functional on a subset K of a linear space L. Further,
let

y, y' e L, (2.11a)

y + \y't K for every real number X, (2.11b)

*See, for example, Mikusinski [3] for proofs and additional discussion.
**We write ■ ■ ■ dx for the integral over the set Ii. Thus Jfl • • • dx is a volume integral and foR ■ ■ ■

dx is a surface integral.
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and formally define {?/} on K by

^ n{z/ + X?/'} |x=0 . (2.12)

We say that the variation 5S2 {•} is zero at y over K, and write

512 {2/} = 0 over K (2.13)

if, and only if, exists and equals zero for all y' consistent with (2.11).
3. The initial-history problem with mixed boundary conditions. In this section

we will formulate the viscoelastic initial-history problem for a large class of boundary
conditions. We will also give two equivalent characterizations for the solutions.

Let p(x), bi(x, t), Ui{x, t), t), r,j(x, t) denote, respectively, the mass density of
the medium, the body force per unit mass, the displacements, the strains, and the
stresses, all defined for (x, t) t Rc X (— °°, °°).

The linearized field equations, for a viscoelastic medium which occupies a region R°
in space, consist of: the equations of motion.

Tn,i + hi = pu\2) , m = th ; (3.1)

the strain-displacement relations

in = ; (3.2)
and the stress-strain relations* given by either

t,-,■(;x, t) = Gim(0)tkl(x, t) + f K7,'!L(sKi(z, t - s)] ds, (3.3a)
Jo

or, equivalently,** by

e,,(x, I) = Jiiki(0)Tti(x, t) + [ [J?m{s)Tkl{x, t - s)] ds. (3.3b)

We assume that the relaxation junctions Giiki{t) and the creep compliance junctions
Jnki(t), both defined on [0, °°), have the symmetry properties:

Gnki = Gjiki = Gkuj , Ji,ki — Jiiki = J km ■ (3.4) t

Before formulating the problem, we find it convenient to introduce the concepts of
admissible and viscoelastic states.

An admissible state S = {w, , e,; , r,, j is an ordered triplet of functions it,-, e,-,- , r,, ,

*In order to avoid the use of complicated notation, we will assume that the material is homo-
geneous; however, all of our results can easily be extended to include the inhomogeneous case.

"We tacitly assume that the stress-strain relations are invertible.
fThe assumption Gijki(t) = Gkuj(t) for every t > 0 is difficult to justify and its validity has been

the subject of considerable inquiry. Coleman [4] has shown that, as a consequence of the second law of
thermodynamics, the above relation holds when t = 0 and t = °o. Gurtin and Herrera [5] also obtain
this result, but on the assumption that the work done in every deformation is non-negative. Rogers
and Pipkin [6] discuss this problem in relation to Onsager's Principle and the consequences of material
symmetry. They show, for example, that a material with "handedness" may not have this property. Of
course, if the material is isotropic, then Gakiil) = Gkia(t) for t > 0 on the basis of symmetry alone.

Suffice it to say that we must have this property if we are to obtain variational principles; however,
it is still an open question to some investigators as to whether one is justified in making this assumption.
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defined on S1 X (— 00, 00), for which e,,- = and rif = th . The restriction of S to
Rc X (— °°, t), denoted by S' = {u' , e', , is called the history of S up to time t.
If we define addition of states and multiplication of a state by a scalar X through

S + S' — {Ui + u'i , e,,- + t'j , r,,- + rj,}, \S = {Xu,- , Xej,- , Xr,,}, (3.5)

then the set of admissible states is a linear space.
A viscoelastic state V =- {m,- , e,-,- , r,-, } is an admissible state for which u{ , eu , r,,-

satisfy the field equations (3.1), (3.2), and (3.3).
Since a viscoelastic material "remembers" its past history through the mechanism

of the constitutive relation (3.3), we must, in order to obtain a well-posed problem,
prescribe the displacements, strains, and stresses in the body up to some initial time
t0 ■ Thus our initial data consists of three functions u'', t" , r" on R" X (— 00, t0) which,
of course, satisfy the field equations. We take t0 — 0, without loss of generality, since
the field equations are invariant with respect to translations of the time axis. Finally,
we write V" = {«", ej,- , r" J and call V" the initial history.

By a solution to the mixed problem, we mean a viscoelastic state V which satisfies the
initial history condition

V = V", (3.6)

and the boundary conditions

Ui =11* on Bu X [0, °°), (3.7a)

T, = r,,n, = T': on B. X [0, °°), (3.7b)

where u\ and T] are prescribed functions. If Bu = dR jB, = dR\, V is said to be a
solution to the displacement {traction} problem.

In order to obtain alternate formulations to this problem, we first try to characterize
viscoelastic states V which satisfy the initial history condition (3.6), in which case we
say that V is a viscoelastic state with the initial history V".

Lemma 3.1. V is a viscoelastic state with the initial history V" ij, and only ij, V is
admissible and satisfies the initial history condition (3.6), the equations of motion (3.1),
the strain-displacement relations (3.2), and either

ru = rti + [Giikl * et(](1,t / > 0, (3.9a)

where

rfa, t) = f {(?,%(*, t + s)e[',(x} -s)| ds, I > 0, (3.9b)

or, equivalently,

*„- = «;) +[Jnk,* rtl](,). t > o, (3.9c)

where

tu(x, t) = [ {J!U,(x, / + s)r'ki(x, -«)} ds, t > 0. (3.9d)*
J 0

*Of course, if the initial history vanishes identically the functions r* and vanish.
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Proof. Suppose V is admissible and satisfies (3.1), (3.2), (3.6), and (3.9a and b).
Then, by virtue of the definitions of initial history and viscoelastic state, the "if" part
of the assertion is true if we can show that (3.9a and b) implies (3.3a) for t > 0. This
follows at once from (2.1) and a simple change in variable. Hence, V is a viscoelastic
state with the initial history V". To show that the "only if" part of the assertion is true,
assume that V is a viscoelastic state with the initial history V". Clearly, V is admissible
and (3.1), (3.2), and (3.6) hold. Thus we are done if we can show that (3.3a) implies
(3.9a and b) for t > 0. We can see that this is so by splitting the range of integration
in (3.3a) into the two sets [0, t] and (t, co) and using (2.1) and (3.6), together with a
simple change of variable, to obtain (3.9a and b). In a similar fashion we can deal with
the inverse stress-strain relations. This completes the proof.

Although all smoothness hypotheses have been omitted, we make the following
exception: If S = {w; , , tu j is an admissible state which satisfies the initial history
condition (3.6), then we assume that «,■ is twice differentiable with respect to time* and
hence automatically satisfies the initial condition

Ui(x, 0) = lim u"{x, t) d= dj(x), (3.10)
t-*0~

u,n>(.T, 0) = lim u'i'w(x, t) d=f Vi(x). (3.11)
t->0~

Notice that d, and v{ , defined through (3.10), (3.11), depend only upon the initial
history V".

Henceforth, we will denote by I and g the functions on [0, oo) defined by

l(t) = 1, g(t) = I * l(t) = t, t > 0. (3.12a)
Of course, for any differentiable function h(t) such that h(0) = 0

l*h = g*hm. (3.12b)
Further let /,• be the vector valued function defined on IV X [0, °°) by

U{x, t) = g * b,(x, t) + p[lv,(x) + d,(x)], t > 0. (3.13)
We now state, without proof, a result due to Ignaczak [7]

Lemma 3.2. Let tu = t. Then TiS and u{ satisfy the equations oj motion (3.1) and
the initial condition (3.10), (3.11), for t > 0 if, and only if,

9 * Tn.i + /. = pUi , t > 0. (3.14)

Lemmas 3.1 and 3.2 enable us to give an alternate formulation of the mixed problem.

Theorem 3.1. Let S — {«,- , €,-; , tu j be an admissible state. Then S is a solution to
the mixed -problem if, and only if: S satisfies the initial history condition (3.6); the equations
(3.2), (3.9), and (3.14); and the boundary conditions (3.7).

Proof. Suppose S satisfies (3.2), (3.6), (3.9), (3.14), and (3.7). Then, by Lemmas 3.1
and 3.2, S satisfies the field equations for t > 0 and the initial history condition (3.6).
Thus S is a viscoelastic state with the initial history V". But S also satisfies the boundary

*This assumption is quite reasonable since we are seeking displacements «,• which satisfy the equa-
tions of motion (3.1). Of course, if (3.6) holds then (3.1) is satisfied for t < 0.
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conditions (3.7); hence, S is a solution to the mixed problem and the "if" part of the
theorem is proved. Conversely, to show that the "only if" part is true, assume that S
is a solution to the mixed problem. Then, clearly, S is admissible and, moreover, (3.1),
(3.2), (3.3), (3.6), and (3.7) hold. Furthermore Lemmas 3.1 and 3.2 imply that (3.9) and
(3.14) are satisfied. This completes the proof.

We now characterize solutions to the mixed problem in terms of the initial history
V" and the stresses r,-,-. We say that r,-,- is a stress field corresponding to a solution of the
mixed problem if, and only if, t;,- = r,-,- and r,-,- has the property that there exist functions
Ui and such that {«,• , e,-,- , r,-, } is a solution to the mixed problem.

Theorem 3.2. Let tu = r,-,- . Then t,,- is a stress field corresponding to a solution oj
the mixed problem if, and only if, satisfies:

T°, = rY, ; (3.15)

and,

g * T{ik,kj) p{Jijkl * Tki\ = ptij /(«,»> , t > 0, (3.16)

g * rik,k = puh, - /, , on X [0, ®), (3.17)

Tt = T,,n, = T) , on B, X [0, »). (3.18)

Proof. Suppose r,-,- satisfies (3.15), (3.16), (3.17), and (3.18). Define m,- and e,, as
follows: for t < 0,

u°. = u\' , «?,- = €,'< ; (3.19)

while for t > 0, u{ and are defined, respectively, through (3.14) and (3.9c and d).
Then, by (3.15) and (3.19), {w,- , tu , r^-} satisfies (3.6). Moreover, (3.14), (3.16), (3.9c
and d), together with (3.6), imply (3.2). Finally, by (3.14), (3.17), and (3.18), the
boundary conditions (3.7) are satisfied. Thus, by Theorem 3.1, the "if" part of the
theorem is proved. To establish the converse assertion, assume that tu is a stress field
corresponding to a solution of the mixed problem. Then by definition there exist func-
tions Ui and en such that , r,-,} is a solution to the mixed problem. We now
observe that (3.2), (3.9c and d) and (3.14) imply (3.16); (3.14) and (3.7a) imply (3.17);
and (3.6) implies (3.15). Moreover, the relations (3.7b) and (3.18) are the same. Thus,
by Theorem 3.1, the proof is complete.

Notice that this result depends upon the second of the equivalent relations (3.3a)
and (3.3b); however, (3.3a) is satisfied whenever (3.3b) is, and vice versa.

4. Variational principles for the mixed problem. The underlying linear space for
the two variational principles established in this section is the set of all admissible
states.

Theorem 4.1. Let K be the set of all admissible states S that satisfy the initial history
condition (3.6). Further, for each t > 0, define the functional A,{ ■} on K through

A, {iSj = | J [I* Guhi * f.i * 6u](x, t) dx + | £ [pUi * Ui](x, t) dx

- f Iff * (r.i ~ r*) * eu](x, t) dx - [ [((? * r+ /,) * mJ(x, t) dx
J R J R
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+ [ lg*T,* «»](*, £)dx+ f [g* (T, - Tj) * «„](«, t) dx. (4.1)*
J Bu JBt

Then

5A,{»S} = 0 over K for each t > 0 (4.2)

if, and only if, S is a solution to the mixed problem.
Proof. Let S' = jw', tj,, t',- } be chosen so that $ + \S' e K for all real X. Then (4.1),

together with (3.4), (3.12), (2.1), (2.12), the divergence theorem, and the properties of
the convolution, implies

5S.A,{^} = f [g * (w(l-,n - «,,) * t'h](x, t) dx
J R

~ f [g * (th - Tu - [Gm, * f*i](1)) * t) dx
Jr

— [(g * Tn.i + /. ~ pu<) * u[](x, t) dx
J R

+ f [g * (w? - w.) * T'i\(x, t) dx
J Bu

+ [ [g * (T< - T\) * «{](«, t) dx, t > 0. (4.3)
J B.

Suppose that S is a solution to the mixed problem. Then, by Theorem 3.1, (4.3),
and the choice of S', (4.2) holds and the "if" part of the theorem is proved. Conversely,
to show that the "only if" part is true, assume that (4.2) holds. Then

5s-A,{/S} = 0 for each t > 0 (4.4)

and for all S' such that S + \S' e K for all real X. Clearly, S'° = {0, 0, 0J; hence, we
can choose S' = {uj, 0, 0}, where u'° = 0 and u\, together with all its space derivatives,
vanishes on dR X [0, oo) and on It at t = 0. Then (4.3) and (4.4) imply

[ Kg * Tii.i + /< — pud * u'i](x, t) dx = 0, t > 0; (4.5)
J R

hence, Lemma 2.1 implies that (3.14) holds. Consider the same choice of S' but require
now that u\ vanish on Bu X [0, ). Then (4.3), (4.4), (3.14), Lemma 2.2, (2.2), and
(3.12) imply (3.7b). Next choose S' = {0, ej,- , Oj, where = 0 and eu , together with
all its space derivatives, vanishes on dR X [0, c°) and on R at t = 0. Clearly, is
symmetric; thus, (4.3), (4.4), Lemma 2.1, (2.2), and (3.12) imply (3.9a). Finally, let
S' = {0, 0, t', j, where r'/- = 0, and t',- , together with all its space derivatives, vanishes
on dR X [0, oo) and on R at t = 0. Then r'u is symmetric and (4.3), (4.4), Lemma 2.1,
(3.12), and (3.6) imply (3.2). If we now require that t'u , together with all its space
derivatives, vanish on B, X [0, oo), we obtain, from, (3.2), (4.3), (4.4), (3.12), (2.2),

*Expanded, the first term on the right hand side of (4.1) has the form

If ff [ {Gan(s — r)e(i(r — g)eki(g)} dqdrdsdx.
£ Jr Jq Jo Jq
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and Lemma 2.3, the boundary condition (3.7a). Now since (3.2), (3.6), (3.7), (3.9),
and (3.14) hold, we appeal to Theorem 3.1 and the proof is complete.

Theorem 4.2. Let K be the set of all admissible states S which satisfy the strain-
displacement relations (3.2) and the initial history condition (3.6). Further, for each t > 0,
define the functional ©,{ •} on K through

©<{&)= [ [g * th * (en - «<*)](£, t) dx - £ f [I * Jiikl * r,,- * rkl](x, t) dx
J R 4 Jr

+ \ f [pUi * Ui](x, t) dx — I If, * u,](x, t) dx
Z J R J R

- [ [g * Ti * (u, - u*)](x, t) dx - [ [g * T) * Ui](x, t) dx. (4.6)
JjBu JB,

Then
= 0 over K for each t > 0 (4.7)

if, and only if, S is a solution to the mixed problem.

Proof. Let S' = {u[ , ej, , t'u\ be chosen so that S + \S't K for all real X. Then
(4.6), together with (3.2), (3.4), (3.12), (2.1), (2.12), the divergence theorem, and the
properties of the convolution, implies

dxas.©,{S} = [ [g* (e„ - e+. - (./,,*, * rkiy1') * r,',](*, t)
J R

- Kff * Tij.i + /,- - pUi) * u'i](x, t) dx
J R

+ f [g * (Wi — Ui) * T'](x, t) dx
J Bu

+ [ [g* (T- T>) * u'A{x, t) dx, t > 0. (4.8)
J B,

Suppose S is a solution to the mixed problem. Then, by virtue of Theorem 3.1
and (4.8), (4.7) holds and the "if" part of the theorem is proved. To show that the con-
verse assertion is true, assume that (4.7) holds. Thus

= 0, for each t > 0 (4.9)

and for all S' such that S + XS't K for all real X. Clearly, S'° = {0, 0, 0}; hence, we
can choose S' = , 0, 0}, where uf = 0 and u', together with all its space derivatives,
vanishes on dR X [0, «>) and on R at t = 0. Then (4.8), (4.9), and Lemma 2.1 imply
(3.14). We now require that u\ vanish on X [0, <*>). Then (4.8), (4.9), (3.12), (3.14)
(2.2), and Lemma 2.2, imply (3.7b). Next let S' = {0, 0, t', } where t'° = 0 and r<y
together with all its space derivatives, vanishes on dR X [0, <») and on R at t = 0
It then follows, from (3.5), (4.8), (4.9), (3.12), (2.2), and Lemma 2.1, that (3.9c) holds
Finally, we require that t',- , together with all its space derivatives, vanish on B, X [0, <»)
Then (3.9c), (4.8), (4.9), (3.12), (2.2), and Lemma 2.3 imply (3.7a). We can conclude,
since S t K, that (3.6), (3.7), (3.9), (3.14), and (3.2) hold. An appeal to Theorem 3.1
completes the proof.
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The functionals A,{-} and 0t{-} which appear in Theorems 4.1 and 4.2 of this
paper are the generalizations of those which appear in [1], Indeed, to obtain these
formally from their counterparts we simply make the following replacements: for A, {•},
let r„ Tii - t , Tt -> T", - T* , f<: ft + g * r,+,., and cimg * {•} -» Gim * I* {•};
while for ©,{•}, let ei; —> e,,- — and Kimg *{•}—» Juki * I * {• }• Here cim and
K.jtj are, respectively, the elastic moduli and the inverse elastic moduli which appear
in [1],

5. A variational principle involving only stresses. We say that r = {r,, } is an
admissible stress field if, and only if, r,,- = rfi . The class of all admissible stress fields
is the underlying linear space for the next theorem.

Theorem 5.1. Let K be the set of all admissible stress fields r for which t°,- = t" .
Further, for each t > 0, define the functional r,{ •} on K through

I\{r} = | / [g * Tim,m * Tik,k](x, t) dx + | [p(Jim * th * tu)w](x, t) dx

- [ [(/<,.;> ~ Pt?i) * Tij](x, t) dx + f [(/,• - pu\) * Ti\(x, t) dx
J E J Bu

+ f [g * (Tib - T,) * 7-ii.iKx, t) dx. (5.1)
J B i

Then

5r,{rj = 0 over K for each t > 0 (5.2)

if, and only if, r = {r,-,-} is a stress field corresponding to a solution of the mixed problem.
Proof. Let r' be chosen so that r + Ar' e K for all real X. Then (5.1), together with

(3.4), (3.12), (2.1), (2.12), the divergence theorem, and the properties of the convo-
lution, implies

5,'r,{r) — — f Kg * m.mi) + fa.n — ptti — p(Jiiki * Til)'1') * r'i](x, t) dx
J R

+ f [(0 * rim,„ + fi - pu\) * T'i](x, t) dx
J Bu

+ f [g * (Tbi - Tx) * rj,..,.](x, t) dx, t > 0. (5.3)
J B,

Suppose Tu is a stress field corresponding to a solution of the mixed problem. Then,
by virtue of Theorem 3.2, (5.3), and the choice of t, (5.2) holds and the "if" part of the
theorem is true.

To show that the "only if" part is also true, we assume that (5.2) holds. Then

5X< rt {-r} = 0 for each t > 0 (5.4)

and for all r' such that r + At' e K for all real X. Then (2.2), (3.5), (5.3), (5.4), Lemmas
2.1, 2.3, and 2.4, together with the fact that r t K, imply that (3.15), (3.16), (3.17),
and (3.18) hold. We appeal to Theorem 3.2 to complete the proof.

The functional F,{ •} in the above theorem is the generalization of that in [1], In
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fact, if we replace by /(iil) — pi in the third term and the operation Kiitl {■} by
[Jtiki * {• }]a) in the second term of r, {-} in [1], we immediately obtain (5.1).
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