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VARIATIONAL PRINCIPLES IN ANISOTROPIC AND
NONHOMOGENEOUS ELASTOKINETICS*

By M. BEN-AMOZ (General Electric Co.)

Abstract. Variational principles are formulated in terms of polarization stresses
and strains in anisotropic and nonhomogeneous elastokinetics. The principles correspond
to the well-known principles of Reissner and Washizu and are shown to produce, under
suitable subsidiary conditions, functionals which are a generalization to elastokinetics
of the Hashin-Shtrikman functionals in elastostatics.

1. Introduction. In recent years, new extremum principles have been discovered
by Hashin-Shtrikman [1] in anisotropic and nonhomogeneous elastostatics, involving
so-called polarization stresses and strains. According to this approach, the first and
second boundary-value problems of elastostatics are rephrased in terms of a reference
material and polarization stresses or strains. Variational principles are formulated in
terms of the polarizations and an auxiliary field of either stress or strain deviations.
The latter are obtained, following Hashin-Shtrikman, through exact solutions of sub-
sidiary boundary-value problems involving the elastic moduli of the reference material.
As was shown by Hill [2], these principles can be derived from the classical principles
of minimum potential and complementary energy. The determination of the auxiliary
fields often poses difficulties which are further enhanced in elastokinetics by the ap-
pearance of time as an additional independent variable in the subsidiary boundary-
value problem.

In view of this it is desirable to formulate variation principles which allow a direct
determination of both polarizations and deviations, in an approximate manner, from
the principle. As the exact knowledge of the deviations is often not essential, the task
of finding the auxiliary field is materially simplified by an independent approximation
of polarizations and deviations within the functional. As is known, the theorems of
Reissner [3] and Washizu [5] offer similar advantages as compared to the theorems of
minimum potential or complementary energy.

In this paper, such principles are formulated** for both boundary-value problems
of elastokinetics and it is shown that with suitable subsidiary conditions, additional
functionals are produced which are generalizations of the Hashin-Shtrikman principles
in elastostatics.

2. The elastokinetic equations. It will prove convenient, for present purposes, to
recast the usual elastokinetic equations by introducing kinetic stress-strain relations
and a kinetic measure of strain. This is achieved through a kinetic “stress” vector*** ¢,
and a kinetic “strain” vector e;, . Using boldface notation for tensors, the following
equations are equivalent to the usual formulation. {

V:é=o0i, @.1)

*Received April 19, 1965.
**Analogous principles have been obtained in heat conduction and will be presented elsewhere.

***These are actually components of the material-energy tensor in relativity which are used herein a
more restricted sense.
tv-¢ is used as a convenient form for ¢;;,; in (2.1).
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6=Le, 2.2)

Ois = Py, 2.3
e=c¢; = 3(;; +u;.) (t=1,--+,3;5=1,---,3), 2.4
€y = U; . (2.5)

Here ¢ and e are the ordinary stress and strain tensors and L is the fourth rank
tensor of elastic moduli with inverse M = L™, Equations (2.3) and (2.5) are, respectively,
the kinetic stress-strain relations and strain measure, where the dot indicates time
differentiation. Apart from any deeper significance (if any) the present formulation
proves convenient in the derivation of variation principles in elastokinetics and in the
transition from one principle to another.

. 3. Variational principle for prescribed surface displacements. We suppose that in a
reference material with elastic moduli L° and density p°, the variables ¢°, €°, ¢%, , €%, , u°
are connected by relations (2.1)-(2.5). Furthermore, the displacements ] are supposed
to be given on the boundary S. We consider next, a geometrically identical body of the
actual material and define stress polarizations (elastic and kinetic) by the relations

é6=1L"e+ (3.1)
Gis = p’ris + pig . 3.2)
Correspondingly, elastic and kinetic strain deviations are given by
e =e—e°, (3.3)
€y =€,y — €5, (3.4)

which follows from the definition of displacement deviations
ul = u; —ul. (3.5)

The functional
ts

2, — Jo) = —f dtf [ -L%-e" — ey p’eely + 2(P-x — 26 — 2¢)
ty v

- #.’4(R'Ili4 - 2f.,‘4 - 2934) — 2f/.L°-¢ + 2)(:41303:4] av, (3'6)
where

Jo %f’dtfv[o“-& — &,-e%] dV 3.7

and
£ =1l = 3i; + ui),
h=ui, (3.8)
P=L-L)", R=(0p-,"7" 3.9

subject to the conditions

ui(S) = 0 (3.10)
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on the surface S, and

uwi(h) = ui(t) =0 (3.11)
at the extremities of the time interval, assumes a stationary value when
VL€ + ) = ("l + ni), (3.12)
Pz=c¢"+f, 3.13)
Rop =l + fla, (3.149)
e —f =0, (3.15)
ey — [iu = 0. (3.16)

Integrating by parts and using (3.10), (3.11) and the divergence theorem, the first
variation of (3.6) is

tas
26J, = —2 f dt f (L°- de’(e! — £/) — o dc/u(cly — [/) + 62(P-x — £ — &)
Blo v (3.17)

- 5ﬂi4(R‘Ni4 - i = 0?4) + Bufiv'(L"-e’ + e) - (Pr’€f4 + #u).” av.

Consequently, 8/, = 0 when (3.12)-(3.16) hold.

The functional (3.6) leads to all field equations and in this sense corresponds to
Washizu’s principle [5]. A more restricted principle follows if (3.15) and (3.16) are taken
as subsidiary conditions in which case (3.6) reduces to

2(J, — Jo) = f dtf e/ L"-e" — ely-p%ly — 2(P-z — 2€) + uu(R-p,e — 2e:)] dV.
“ ’ (3.18)

The functional (3.18) leads to (3.12)-(3.14) and thus corresponds to Reissner’s
principle [3]. While (3.6) is slightly more general, the desired simplification mentioned
earlier in the introduction is effectively achieved through use of (3.18). If in addition
to (3.15) and (3.16), (3.12) are taken as subsidiary conditions, (3.6) reduces to

2], — J) = —[ 7 ﬁ [+(P-r — & — 2") — piu(Rops — ¢l — 2°)]dV.  (3.19)

The functional (3.19), subject to the stated conditions, assumes a stationary value
when (3.13) and (3.14) hold. This constitutes a generalization to elastokinetics of the
Hashin-Shtrikman principle in elastostatics when surface displacements are prescribed [1].

Two limiting cases are of interest. When

L°—>0 and o —0

(3.19) reduces, by the procedure of reference [1], to
ts
» = T ‘M6 — 0.4-1/proiy] dV 0ilbits ] .
o7 f dt[fv[d 6 — cia-1/p-011] -I—fsanudS (3.20)

while (3.12) reduces to

Vs =0, . (3.21)
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The functional (3.20) subject to (3.21) is Hamilton’s principle expressed in terms of
stresses (elastic and kinetic) and is effectively equivalent to Castigliano’s principle as
extended by Reissner [4] to elastokinetics. On the other hand, when

L°> » and p"— o,

again, by the procedure of reference [1], (3.19) reduces to Hamilton’s principle

2], = f’dtf [e-L-e — e:s-peis] AV (3.22)
ty 4

expressed in terms of strains (elastic and kinetic) given by (2.4) and (2.5).
4. Variational principle for prescribed surface tractions. When surface tractions are
prescribed, elastic and kinetic strain polarizations are defined:

e= Mg —n, 4.1)
s = p° 0 — Mg - 4.2)
Accordingly, stress deviations (elastic and kinetic) are defined by
¢ =¢— 4, 4.3)
ol = ai — ol . (4.4

The functional
ts
2/, = J) = = [t [ 10-M"& = oli:p" 0l + Q@+ — 20)
ty 4

= MN8Ny — 204) — 26" + 200,-fi ] AV (4.5)

subject to the conditions

ai(S)n; =0 (4.6)
and
vi(t) =vi(t:) =0 4.7
assumes a stationary value when
V-é¢ = o, 4.8)
Q:n = g, 4.9
SNy = 04, (4.10)
M°-¢' — n = f, (4.11)
p" ot = N = fues 4.12)
where
Q=M™"-M7", S=(""-»)" (4.13)
and

f = f',,. = %(vi-f + vi,i)v

v;

4.14)

fu =
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with v; as three arbitrary displacement functions. This corresponds to Washizu’s principle
[5] when surface tractions are prescribed over the entire surface. A more restricted
principle corresponding to Reissner’s is obtained if (4.11) and (4.12) are taken as sub-
sidiary conditions. In this case (4.5) reduces to

o, — Jo) = f’dtf [6/-M% 6" — oly-p” " ol
ty 1 4

—n:@Q-n — 26") + Ns(S iy — 203)] AV (4.15)

which assumes a stationary value when (4.8)-(4.10) hold. If, in addition to (4.11) and
(4.12), equations (4.8) are taken as subsidiary conditions, there follows from (4.5)

2, — Jo) = —f 7 fv [1Qen — ¢ — 26) — Na(S-hia — ol — 20%)] AV (4.16)

which assumes a stationary value when (4.9) and (4.10) hold. This represents a generali-
zation to elastokinetics of the Hashin-Shtrikman principle [1] when surface tractions
are prescribed. Again, it can be shown that in the limit as M’ — 0 and p°~* — 0, (4.16)
reduces to Hamilton’s principle

ts
2J, = f dtf [e-L-e — ey-p-e] dV, 4.17)
ta 14

whereas, when M’ — » and p°”° — « we obtain Hamilton’s principle in terms of elastic
and kinetic stresses.
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