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—NOTES—

LINEARIZATION BASED UPON DIFFERENTIAL APPROXIMATION
AND GALERKIN’'S METHOD*

BY R. BELLMAN AND J. M. RICHARDSON
(Universily of Southern California and Hughes Research Laboratory, California)

Summary. We present a new linearization technique based upon differential
approximation which is considerably simpler and more flexible than those used in our
previous work.

1. Introduction. In some previous publications (see [1] for further references), we
have applied the technique of differential approximation to obtain linear functional
equations for approximate solutions to linear and nonlinear equations. In some cases,
we are trying to avoid nonlinearity; in some cases, to eliminate random effects; in other
cases, to reduce the dimension of a system to manageable terms. In this note, we wish
to discuss some further aspects of differential approximation and to compare it with
Galerkin’s method for treating nonlinearity. We shall restrict our attention to ordinary
differential equations of deterministic type.

To illustrate the first approach, consider the nonlinear equation

W' +gw) =0, w0 =c¢, w0 =c. (1.1
We wish to obtain an approximate solution » via a lincar equation of the form
v 4+ av’ + by = 0. (1.2)
One way to do this is to use an approximation of the form
gw) = au + b, (1.3)

or perhaps g(u) = au + bu’ + c. Let us consider the simpler form for the purposes of
illustration. How do we determine the parameters a and b? If «(¢) may be considered to
be known, either analytically or numerically, a and b can be conveniently obtained by
means of the minimization of the functional

T = fo " o) — au — b dt. (1.4)

If u(t) may not be considered to be known, in the sense that it is the function whose
approximate form we are secking, there are, nevertheless, several feasible approaches
to the determination of @ and b. One is a sclf-consistent technique. Referring to (1.2),
consider v, the solution, as a function of @, b, and ¢, v = v(t, a, b). In place of minimizing
J(u) over a and b, let us minimize the function

K(a, b) = f "0t a, ) — at, a, b) — b dt. (1.5)
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This procedure often leads to a complicated set of simultaneous transcendental equations.

It is not necessary, however, to proceed along this direct route. An alternate, and
occasionally more felicitous, path is the following. Let wu,(f) denote an approximate
solution to (1.1) obtained in some other fashion. Let a, and b, then be determined as the
values minimizing

J(u) = f: (g(uy) — au, — b)* dt. (1.6)

Let u, be determined as the solution of
u’ +aul + b =0, w0 =¢, u =c, 1.7)

then (a,, b,) by the minimization of J(u,), and so on. We expect a,, b, and u, to converge
as n — o to the quantities determined by the direct self-consistent technique. There
has, however, been little effort devoted to the investigation of these matters.

2. Higher order approximations. Although the foregoing procedure yields excel-
lent results in a number of cases, there remains the challenging question of obtaining
improved estimates. Furthermore, it is desirable to establish the existence of an algorithm
which will yield a sequence of functions {u,}, each satisfying a linear differential equation
of order d, (with d, —» « asn — ), with the property that u, converges to u asn — .

One approach, sketched previously, is the following. Suppose that g(u) = u + u°.
Then

W) = 3u'u’,
@' = 3uu' + 6uu’’ 2.1)

—3u® + 6w’ — 3.

We obtain corresponding expressions for the variables w*u/, u(u’)’?, (v')’. Hence, if we
introduce the notation

w, = u’, w, = wu, wy = u’)’, wy = W)*, 2.2

we see that we have a system of simultanecous equations
4
% = > aw + gww), =123, 4. (2.3)
i=1
The original equation for  has the form

uw' +u+w =0. (2.4)

Write g(u, u') for the vector with components g,(u, v’), = = 1, 2, 3, 4. Proceeding by
analogy with the foregoing, we look for an approximation of the type

r A

w,
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where B is a constant 6 X 4 matrix. The matrix B can, in principle, be determined using
one of the procedures described above.

3. Discussion. There are several drawbacks to the method described in the fore-
going section. In the first place, the dimension of the approximating system increases
at a disagreeable rate as the order of the approximation increases. The number of param-
eters in the linear system increases roughly as the square of the dimension. This leads
to serious computational difficultics if we try to apply these techniques to a system of
equations or to a high order nonlinear differential equation.

Secondly, this approach depends upon the ability to differentiate g(u) repeatedly.
This would prevent us from treating functions such as |u|*.

A third disadvantage will be mentioned below in Sec. 6.

4. An alternate linearization. With the foregoing comments in mind, let us intro-
duce an alternate approach. Write

o) = au + b + fo Kt — u() ds, .1)

where the parameters a and b and the function k(f) are now to be chosen in a convenient
fashion. If ¢ ranges over (0, «), it is often possible to choose k(t), dependent upon u of
course, so that (4.1) is an equality. Using the Laplace transform,

Ligw) — au — b)
L(u)
This encourages us in the belief that (4.1) is a useful approximation. In general, we arc

interested in 0 < t < T < . Consequently, let us choose k(t) to have some simple
analytic form which facilitates the minimization of

= L. (4.2)

fOT <g(u) —au — b — j: k(t — s)u(s) ds>2 dt. (4.3)

Suppose, for example, we choose
N
k() = D ce. (4.4)
=1

An important advantage of this representation is that the equation

w’' + au + b + f k(t — su(s) ds = 0 4.5)
0

is equivalent to a linear differential equation of degree N + 2. To avoid the usual dif-
ficulties of exponential approximation, we resort to differential approximation and take
k(t) to satisfy a linear differential equation

EY 4+ k™ 4+ oo +ayk=0, k0 =0b, i=01,--,N—1 (46

where a, b, a;, and b; are to be chosen so as to minimize

2

./;1' (g(u) —au — b — ‘/: E(t — s)u(s) ds> dt. 4.7

We can expect this procedure to be quite effective [2].
5. Existence of a minimum. It is worth noting that it is not immediate that the
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minimum value of the expression in (4.7) exists. Consider, for example, the problem of
minimizing

fT (w—b)dl (5.1)

over a and ¢ where v’ = au, u(0) = c. If we fix ¢ > 0 and take b < 0, then although the
infinum is [7 b dt, no finite value of a yields this value. On the other hand, if we allow
a and ¢ to vary, then the minimum is attained. These considerations, of course, are
important if we are interested in an actual determination of the minimum via computer.

In a separate paper, general existence and uniqueness results for problems of dif-
ferential approximation will be presented.

6. Avoidance of anharmonics. In Section 3, we noted that the method sketched
in Section 2 had a third disadvantage associated. To describe this, let us return to the
nonlinear oscillator, v’ + u + eu® = 0.

The approximation 4’ = au, with a determined as indicated previously, yields the
usual first order perturbation expansion if ¢ << 1. If we attempt to find a second order
approximation, we encounter the annoying fact that the optimal B found via (2.5) yields
a linear system with anharmonic frequencies.

To avoid this, we could impose an initial constraint on the set of B’s under considera-
tion, to the effect that we admit only those matrices for which the resultant linear systems
have harmonic frequencies. As might be surmised, even in this simple case, the constraint
cannot be simply enforced.

On the other hand, it is quite easy to require this for the system resulting from (4.5)
combined with (4.6). In subsequent papers, we will discuss this point, as well as more
general functional equations and stochastic effects.

7. Galerkin’s method. Let us now consider an alternate approach to linearization.
In Sec. 1, we outlined a procedure for finding first the approximating linear equation,
and then the approximating solution. We can, if we wish, reverse the process in the
sense of first finding an approximate solution and then deducing an associated linear
equation.

To illustrate this technique, return to the equation of the nonlinear oscillator v’ +
u+ e’ =0, u0) = ¢, u'(0) = 0. Let us look for a solution of the form

U = ¢ cos wi, (7.1)

and determine w by the condition that

T
lim %f (—cw’ cos wt + ¢ cos wt + e’ cos’ wi)® di (7.2)
0

I'—

is a minimum. This gives a correction in the frequency if ¢ < 1.
On the other hand, if we start with the Van der Pol equation

w’ + e@w — Duw +u =0, (7.3)

with 0 < e <« 1, and ask for an approximate solution of the form u =< a cos ¢, the same
minimization procedure yields the amplitude of the approximating periodic solution.

To apply this method successfully, it is clear that some a priori information con-
cerning the nature of the approximate solution is required.
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8. Rigorous aspects. Starting with the equation

uw’ + glu,uw’) =0, 8.1)
the foregoing method yields a new equation of the form
v+ g@,v') = AQD), (8.2
where
1 T
lAl]? = lim—f A dt 8.3)
T T 0

is small. Actually, in the foregoing cases, and in general, only behavior over a finite
t-interval is required since we are looking for periodic or almost-periodic solutions.

Is it true that w =2 v? This is a question within the sphere of classical stability theory,
as we see upon setting v = u 4+ w, u(0) = v(0), ¥'(0) = v'(0). The function w satisfies
the equation

w’' 4+ gu+ w,u +w)—uw =0
w4+ gu + w, v + w) — g, u) + A{) = 0.

Suppose that 0 < ¢t < ¢, . It follows that if ||A|| is sufficiently small, then |w| will be of the
same order of magnitude over [0, {,]. What is interesting about this is that it shows that
a heuristic technique can be made rigorous if it is successful enough.

(8.4)
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