
1965] NOTES 283

VISCOUS MHD FLOW ABOUT A SPHERICAL MAGNETIC QUADRUPOLE*

By VIVIAN O'BRIEN (Applied Physics Laboratory, The Johns Hopkins University)

Abstract. The perturbation velocity field and the perturbation magnetic field due
to the first-order interaction of the slow flow field of a conductive viscous fluid with an
aligned quadrupole magnet have been calculated. The drag increase can be computed
from the perturbation stream function alone with an economy of effort compared to
previous calculations for magnetized bodies.

Introduction. A steady axisymmetric magnetohydrodynamic (MHD) field allows
the solenoidal velocity field of an incompressible fluid to be expressed in terms of a
Stokes stream function \f/ and the corresponding solenoidal magnetic field in terms of a
corresponding magnetic flux function SF [1]. The complete set of normalized MHD
equations reduces to two coupled non-linear equations:
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where 2D = d2/dr2 + r~2sin 0(d/d0)[(sin d)~1d/dd] is the Stokesian operator, Re = Ua/v
the Reynolds number, M = (aa2B2/pv)1/2 the Hartmann number and Rm = naaU the
Magnetic Reynolds number. U is the steady uniform velocity at infinity, a the sphere
radius, v the kinematic viscosity, p the density, a the electrical conductivity, p. the
magnetic permeability of the fluid, B the magnetic field intensity at the axis of the
sphere, and (r, 6, <p) the spherical polar coordinate system. Contours of the \p field are
streamlines and contours of the ^ field are magnetic lines of force. The relations of
* and Sf' to the velocity and magnetic vector fields (definitions) are given by the com-
ponent parts
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The induced volume current field, Ji* , is given by

J = -4— 3M>. (3)r sin 6

Magnetic quadrupole solution. Assume small perturbations from the viscous velocity
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field \po of a sphere in uniform flow given in [2] and small deviations from the magneto-
static field are given by the quadrupole flux function

*0 = r~2C;1/2(cos 6), (4)

where C\(z) is a Gegenbauer polynomial of order n and index y [1], The field equations
(1), can be linearized to two separate equations for the perturbation velocity field
of 0(M2) and the perturbation magnetic field ^ of 0(Rm). Satisfying the appropriate
boundary conditions for real materials (viscous fluid, finite conductivity and perme-
ability) the first-order MHD field is given by
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It is assumed that the magnetic permeability of the permanently magnetized body is
effectively infinite, otherwise there would also be a disturbance magnetic field inside
the sphere.

As in the non-magnetic velocity field calculations of [2], this "Stokes" solution \pi
overestimates the vorticity far ahead of the body through neglect of the inertial term
in the governing equation. To complete the picture the "Stokes" solution should be
matched to the appropriate "Oseen" solution in the manner of [2]. The matching is
uniquely determined by the limiting form of as r —» <» but is not necessary here.

Drag. Usually the drag increase due to the Joulean dissipation of the induced
currents flowing around the axis is computed by integrating the electromagnetic stresses
over the unit sphere [3]. This electromagnetic drag increase is somewhat offset by a
decrease in viscous dissipation from the non-magnetic case. The viscous drag change
can be evaluated by integrating the viscous stresses over the sphere surface, but this
first requires integration of the momentum equation to get the perturbation pressure
field. However, the tractions of the MHD field can be evaluated on a very large control
sphere after the manner of Goldstein [4]. By arguments similar to those advanced by
Payne and Pell [5] in computing Stokes drag by a limit process, the total MHD drag
can be computed from:

T"\ (%irpavU)r\l/x „ jT 5M2 ,ns
DragMHD = lim —2 . 2 a = 6irpavU jrrr. (7)
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Note this is the total MHD drag, not just the viscous contribution; it includes the
effect of the electromagnetic stresses.

Conclusion. Similar calculations of ^ and for magnetic unipoles and magnetic
dipoles (including matching to the "Oseen" solutions) have been carried out [6]. The
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drag results corroborate those published previously, [3, 7, 8]. Table I shows how rapidly
the MHD drag effect falls off with increasing order of magnetic pole. Analysis for the
higher order multipoles could be carried out in the same fashion, but, since the drag
must be rather small, the computations have not been carried out.

Table I. MHD Drag of Spherical Magnetic Multipoles in Slow Uniform Flow.

Drag MHD Electr°
Magnetostatic  —— = magnetic •+■ viscous

Magnetic Pole Flux Function Portion Portion

37 1 31
Unipole SFo = Cr1/2(cos 8) -— M2 - M2 — -—M2K ' 210 4 420

Dipole 'i'o = r_1C2_1,2(cos 8) M2 — M2  — M2K ' 150 60 100

Quadrupole = r~2Ct~ll2(cos 8) ^ M2 —— M2 — •——— M2K ' 4158 252 (63)(660)

Higher Multipole >Po = r-n+IC'»-1/2(cos 8) ~10~nM2
(estimated)
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