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SERIES REPRESENTATION OF CONTINUOUS FUNCTIONS*

By
MURRAY WACHMAN

Missile and Space Division, General Electric Company

1. Introduction. A representation series is derived here for a class of continuous
functions $ on the i-interval I' = [0, 1]. If <p(t) e $ on a subset a of I' then:

m <» c + 1

fit) = Z Z EaUQvW^r,) , tec (1.1)
»«=i ®=o L »=o J

where t,- is defined by the continuous function r,- = /#(f) t [0, 1] for I e I', and Zf-i
¥>*(T/) — This series representation converges pointwise to <p{t) for fee. The param-
eter k ranges over values 0 < k(t) < k < 1, where k(t) is determined by the local prop-
erties of <p(t) at t e a.

For the class of functions <p(t) with the property that a = I', this representation
is shown to be unique within That is, there exists no other set of functions e $>'
such that:

<p{t) = Z E Z
j— 1 ® = 0 *' = 0

other than Z?-i "A; (r,) = ]C7-i v>*(r,) = <p(.t), t,- e I'. The representation series (1.1)
and the uniqueness properties of the class $' are the contents of Theorem 1.

It should be noticed that this representation series for continuous functions is more
similar to the Taylor series representation for analytic functions than to the expansion
of continuous functions using the concept of convergence in the mean. Clearly the
convergence concept of this representation series and the Taylor series are the same,
which result in the fact that both series depend strongly on the function itself. There
are several other analogies between the two series. One point of analogy is between
the radius of convergence concept and the value k(t).

Theorem 2 in section 3 deals with the continuation of a function <p e If ip e
Theorem 2 states that it is sufficient to define each ip* (t,) on a subinterval r# e [0, 5], 0 <
5 < 1 in order to completely define <p in I'. In some sense, to be discussed in section 3,
there is an analogy between the continuation of <p t <!>' and analytic continuation.

Section 4 exhibits a class of functions tp t i>', which is not analytic in I'. The class
of continuous functions x(i), defined by a finite set of joined polynomial segments is
shown to belong to

Since series (1.1) is a discrete point representation of a continuous function, one
is immediately aware of the possibility of its application to the fields of numerical
analysis and data processing. The representation series in truncated form, is an extrap-
olation formula over a definite set of grid points. The grid points, fcr,- , fc2r,- , fc3ry , • • • ,
are the points at which the known function values are taken.** There is a class of numerical

*Received June 15, 1964; revised manuscript received March 19, 1965.
**These grid points are self generating in the sense that if one choses a k, and extrapolates to r,- by

using the values k<+1 Tj, i = 0, • • • , n one can then find the point Tj/k by using the same data.
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problems for which this truncated form of the series might be helpful. A more funda-
mental problem of numerical analysis for which this series may be used concerns the
general approach to numerical analysis. For a large class of problems, one must almost
immediately assume that the solution is analytic in order to construct a numerical
model of the mathematical solution. The above series might furnish some greater latitude
in this area, since it covers a more general class of functions.

There are some major restrictions, however, that are an essential property of this
series. While the series is absolutely convergent with respect to the v summation, it is
not absolutely convergent if we consider it as a series of the individual terms in the
brackets. This fact does not allow one to rearrange the series in the form ^ /3„<p*(/cMr),
and effectively removes the procedure of comparison of coefficients as an effective
tool which may be applied to the series.

2. The Series Representation. It is convenient to consider a function x(t) analytic
on the closed interval [ — 1, 1]. Since one can always consider a closed subinterval of
any interval of analyticity this presents no problem. Let x(t) be analytic in some interval
( — a2, a2) where a2 > 1, we shall now prove x(t) e

Lemma 1. If x(t) is an analytic function in the i-interval, I = [ — 1, 1], and the
parameter k lies in the region 0 < k < 1, then for any t e I the following relation holds,
where the series on the right hand side is absolutely convergent:

x{t) = 2x(kt) - x(k2t) + E f [(2 - k)xM{kt) - x"\k2t)](dty (2.1)
vl Jkt

where xl'\kt) = (d'/drj")x(ij) | and j'kt (dt)v denotes the uth fold integral:

[' ■■■ [ dt ■■■ dt.
Jkt Jkt

• times
v times

Proof: Since t 11, and 0 < k < 1, x(t) has a Taylor series expansion about x(kt)
and x(kt) has a Taylor series expansion about x(k2t), i.e.,

*«) - t
0

and

„ X (kt)

xikt) = E (1 ~ k).W x"'(fc20-~ v.
Let us integrate the series:

i: [' [(2 - k)x('\kt) - xM{k't)](dty
p = l *Jkt

= Z f |~(i - + E(1 ~ k)'(kty xu+i\k2t)\dty (2.2)
»-l Jilt L i-l 11 J

Integrating the first term of each integral in the right hand side of equation (2.2) by
parts we get:

2; f [(2 - k)x"\kt) - x"\k2t)](dty
»=■! Jkt
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= Z f' (1 - k)(txw(kt) - ktxM(k2t)) - [' (1 - k)ktx"+1\kt) dt
®=i Jkt L Jkt

+ [ Z (1 ~ x"+i\k2t) d/lff/)"1 (2.3)Jt< ,-i z! J

= (1 - k)txil\kt) - (1 - k)ktxa\k2t) + Z /" T(1 - k)2tx"+1\kt)
p-1 L

i-2
(d*)\

We now proceed by induction. Suppose that we repeat this procedure m times and at
the mth time get:

Z J [(2 - k)x(v\kt) - xM(k2t)](dty

= Z(1 ~.k)U<xw(kt) - Zx«m
i -1 2-. tKll 1.

+ Z f ["(1 ~ kr+1 tmx('+m\kt) + Z (1 ~ x"+'\k2t)\dty (2.4)
»-l Jkt L m\ i-m + l 1" J

Integrating the first term of each integral by parts, we get:

L f [(2 - k)x'"(kl) - i"'(h'H](diy

" " _ _ fc-»)W,„w
i«i i-i 2-!

+ 5 £ [irriyr(m + 1)!

(1 ~ f' ktm+1x(v+m+1\kt) <« + [' X (1 fe)< (ktyx('+i\k2t) dt\dty
•V ! Jkt Jkt i-m+l t! J(m +

, -£ <L^a:(V.,M _ -£ a - mw
t=l

+ £ £ Pkrir ^ {i.0]((J1).
which is exactly the form we seek. Since equation (2.3) shows that this form holds
for m = 1, we have proved by induction that:

Z f [(2 ~ k)x('\kt) - xu\k2t)](dt)'
vl Jkt

= Z (1 fc)' t'xu\kt) - Z (1 fc)' (Wxu\k2t) = x(0 - 2x(fc0 + z(&20
<-i 2' i-i z!

This completes the proof of Lemma 1. It is clear that equation (2.1) is nothing but a
rearrangement of the Taylor series of x(t) and it therefore converges absolutely for
t 11. Equation (2.4) also shows that a truncation

2x(kt) - x{k2t) + Z [ R2 - k)x"\kt) - x"\k2t)](dt)',
t> = l Jkt
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results in an error which is of the same order in t as the truncation, X^T-o ('"AO
(1 — k)°xM(kt), of the Taylor series of x(t). It should be noted that if x(t) is analytic
for t s [0, a], 0 < a < 1 then § < k < 1.

Let us now introduce the following notation:
let

V T V j i-I j1-1—1 J 2~1-s = Z(-i)' EE E ••• E
t'-l i = l ii"i j i — x — i — 1 — 2 Ji-1

and let

E U = E' U .
a =1

Lemma 2. The following relation holds for t e I, v > 1:

[' xM(kt)(dty = ^ + s
J kt ft »-1 (2.5)

Proof: We proceed by induction. It is clear that Lemma 2 holds for v = 1, i.e.,

[ xn\kt) dt =
Jkt

x(kt) x(k2t)
k ~ k

Suppose that equation (2.5) holds for v, we will prove it holds for v + 1.

r< LdV7,A • r
[' x"+1\kt)(dty+1 = [' r ^ + s

Jkt Jkt fc i-1
dt

x(kt) x(k*t) • r i (x(ki+it) x(ki+2t)\
k'+1 k'+l + ,<+».-£< \ ki+1 ki+l )

L k '•

x(ki+1t)_ x(kt) _ yi x(k2t) I
~ fc,+i + a,

v r + 1 v j 9 — 1

+ E E E E
t-2 j'< = s + l J< — i-1—1 Ji = l

" (—l)'a:(fe'+10

fc(.+D(.+i )-2j.

+ (-i),+1 E E ••• E
= v

x(ki+1t)

s(fc'+2Q
J»+1«» + 1 J » = ® Ji-1 j^(.v + 2) (g+p—y**1

_ x(fc0
— T.r + 1 + O

/V t = 1 fc«+i)c+i >-E/„ (2.6)

which completes the proof of Lemma 2.
At this point it is convenient to introduce the notation

ft.#) = £
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PUk) = (-!)•' E E • • • E —L— , i = 1,
»*-» = Jl-1 - (» + l)»-^Ja

j8if, = 0 for i > w

We also see that since:

[' xM(k2t)(dty = h f x"\k2t)(dkt)',
Jkt * Jkt

f .'"mm- - i + sJkt /C ft/ i = l

by Lemma 2 we get:

1 \x(k2t) ' [~ x(k'+2t)

Let us define

v.

To ,.(k) = ^ /30 ,.(&)

7i,.(k) = -kPi,.(k).

Using Lemma 1, we can than write*:

*(#=erz«<..(*)s(fc'+ioi. *
o=o L »-o J

where:
**0,0 = 2

«1.0 = —1

ofo,» = (2 k)(30tv(k) v 0

«... = (2 — &)j3,„(&) — » = 1, •••

«.+i,. = ~y,.v(k)

It should be noticed that Lemmas 1 and 2 prove that our representation series is
valid for analytic functions in their domain of analyticity, that is, for an analytic function
x, we have j = 1, ti = t and <p\ — x.

From equation (2.6) we see that

E «<,.(&)= 1,

but we also see that while the series is absolutely convergent over v, it is not absolutely
convergent when we consider it a series over the individual terms in the brackets.

*It is assumed that there exists no finite integer m > 0 such that = 0 on 7. If such an m
exists, it is clear that:

x{t) = E E«.-,.(%(fc<+1*)
i.e., in this case we prescribe = 0 for v > m.
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Let us define the polynomial Pjnktl(T>) to be that nth order polynomial such that
forafixedfc, U e/'andfori = 1, • • • ,n + 1,= ^(fcVi,-) where r,- = /,(<) 11'
for t 11' and m = (it). We now define the class of functions <3?.

Definition 1. <p(t) t $» at ti e I', if there exist a finite set of continuous trans-
formations Tj = /,-(£); Tj e J' for t t I' and a finite set of continuous functions <p* (r,);
j = 1, • • • , m; such that = <p(t), where* each <p*(t,) has iO-,)} as a
polynomial approximating sequence for r,- e [0, /,(<i)] and all k in fc(ii) < k < 1.

Lemma 3. If ^(r) is continuous in [0, ti] and the series ^™_0 &<, ,\p(k'+1T1)
converges for /c(tx) < k < 1, n e I', then

0 = £ £ ai.ri(k'+1Ti) for < k < 1.
t> = 0 t = 0

Proof: If i^(t) is continuous in [0, tj] then it has some polynomial approximating
sequence (P„(r)} in [0, rj where n denotes the order of the polynomial, then:

«n > \i(n) — | = i(Tl) — X) <*i.vP„(k, + 1T1)
r =0 t =0

— £ 'n ai.v^(kx+1T0 — X

where

P»(t) — ^(r) = e^(r) re [0, r,].

Since limn_„ e„ = 0 and since limn_„ 22"-o ai,v\f/(k,+1T1) converges then lim„_„
]C"-o Z)i-o ai.v^n(k'+1T1) converges and since lim„_„ e'Jj) = 0, we_have:

lim £ £ = 0.
n—»a> r=0 t = 0

Therefore,

<£(ti) = '*52 <*i.'i(k'+lTi).
o=0 t =0

Theorem 1. Let ^>(0 e $ at U e I'. Then for any k in 0 < kfa) < k < 1, <p(t) has
the following representation:

o = £
j-1 r =0 L i=0 J

If in addition <p t <£', then this representation is unique in That is, there exists
no other set of functions ^,(r,) e $' such that:

<p(ti) = £ £ [" 2 a<.t(&)&(&<+1Ti<)l
j-1 »= 0 L i=0 J

other than
m' m

X) ̂ ;(r>) = Z = <p(0, /e/'.
*The stress upon the sum of Vj*(jj) in the definition is designed so that if <pi(t), ipi(t) e$> at t, then the

sum + ip2(t) e# at t.
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Prooj: Since <p e $ at ti tI', for any k in k(ti) < k < 1, there exists the set of v>* (r,)f
Ef-i <P*(Ti) = <p{t), with the polynomial approximating sequence {P (r,)}
in [0, Consider the sum:

PM = EE \z«Uk)<rWi+lTU)l
1-1 »-0 L i-0 J

E E Za..m<pW+1Tll) - p^xk-^T,,))
J — 1 5=0 »— o

If we use the series representation for (?"/)(see footnote (on p. 207)) we get:
n m n t> + l

J»(0 — E PinktXTu) =
7-1

Then:

lim
n—»oo

and therefore,*

5»(^l) E J'n4<i(rli) = 0

rn m oo [ »+1

lim E*Wt») = E E E •
„_♦«> ,=1 3=1 ® = 0 Li-0 J

But since the PjnktXTi) are approximating polynomials to the ^*(r,) in [0, /,(^)] we
have that:

m m co I c +1

*>(0 = E^(r.,) = EE E«.'..(^(fci+1n,)
j=i j=i ®=0 L i=o

This completes the representation part of the proof. We now prove uniqueness.
Let <p t From Lemma 3 it is clear that if <p e then all the <?*■ t $>'. Let e

j = 1, • • • , m' and suppose that both:

<p(t)
m co p + 1

= E E E oti.v'P*i(k'+1Tj) , for kr(t) < k < 1,
3=1 ®=o L t=o J

and

v(t) = E E I E , for k^t) < k < 1,
J-1 r =0 L » — 0 J

hold for t t I'. We want to show E"-i = E™-i ^;(r>) on The proof is very
simple, i.e., if we take k'(t) = max (k^(t), kv(t)), by Lemma 3,

®—o L i»o

and

1(r,) = E at each ^ e , &'(/) < fc < 1;Z^,(k)<pW+1r.)
,i=0

m'

••• ¥>(0 = E *,(r,) = E^(r,) for <t/'.
J-l 1-1

This completes the proof of theorem 1.

*Since [Pjnht^) is a polynomial approximating sequence there is no problem concerning conver-
gence of the series, one could therefore also use Lemma 3 to complete the proof.
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In the sense that a continuous function of m variables may be approximated by
polynomials in m variables, one can define the approximation of the functions of m
variables, p*(t,) in terms of the polynomials where r,- in the vector r,- =
(/w (£i, • • • , • • • , /m; (£i, • • • , £*>))• It can then be seen that we can extend definition 1
and concepts in Lemma 3 and theorem 1 to continuous function of several variables.

3. The continuation of functions <p t Let us introduce this section with a
discussion. The main question that we ask here is as follows: Suppose <p(t) e is it
possible that by using the uniqueness properties of <p on I', one need only define the
<p*j on a proper r,-subinterval I" of I', I" = [0, 5], 1 > 8 > 0, to completely define
<p on /'?

If this conjecture were true it would provide a mechanism for the unique continuation
of continuous function <p e <£'. One cannot continue <p from I" to I' simply by taking
the values of y* on I" and by using equation (1.1) to generate <p(t) for t 11' — I". At
first one must establish the existence of a k(t) for each t 11' — I", that could somehow
be associated with <p. This implies that to continue v we must have, to start with, a
function <p' t $ for all t e I" such that <p' — <p on I". Since continuous functions are
unique in <f>', this means that <p' = <p on I'.

The role that k(t) plays in this process is analogous to the role that the radius of
convergence plays in analytic continuation. At each point t, k(t) determines the region
of k, i.e., 0 < k(t) < k < 1 on which equation (1.1) is valid. k(t) therefore determines
the upper bound for the distance from t of the first point kt, at which the right hand
side of equation (1.1) can be evaluated. k(l), t e I' — I", therefore, determines how far
we can continue <p in one step. The process of continuation may possibly be repeatedly
performed in a sequence of steps analogous to a sequence of steps of analytic continuation.

Clearly every point to which we continue $(t) must by definition be a point at which
<f> e Therefore, using equation (1.1) a continuous function may only be continued as
a continuous function in <£'. Therefore, continuation implies the existence of a continuous
function in which agrees with the original function in I'. This fact is analogous to
the fact that for analytic continuation the analytic function must agree in their region
of common definition.

Theorem 2. Let <p t It is sufficient to define <p* (r;) j = 1, • • • , m on the r,-
interval [0, 5] for any 5, 0 < 5 < 1, in order to completely define <p(t) in

Proof: All we have to prove is that by defining each on [0, 5] we completely
define <p*(t,-) on all r,- = /,((), t e

At each t 11' there is a k(t), 0 < k(t) < 1. We claim that there exists a number 7,
0 < 7 < 1, such that for all but possibly a finite number of the t e I', k(t) < 7. Otherwise,
there would exist a sequence of t{ 11' such that lim,^„ fc(i.) = 1. But since I' is closed
this means that there exist a T 11', T = lim^„ (f;), such that k(T) = 1, i.e., <p does
not belong to at T. This is contrary to our assumptions. Since 7 holds for all but a
finite number of points and because <p e then exists a 7', 7 < 7' < 1, such that for all
t t V, k(t) < 7'.

Let k = 1 + 7'. We then have that in one step we can continue each of the 95* (r, )
from the r,-interval [0, 5] to the r,-interval [0, min (1, k5)]. After I steps we can
continue <p*(r,) to the r;—interval [0, min (1, k!5)]. Since k > 1 there exists an integer a>
such that k" > 1/8. This means that after co steps ^*(r,) would be uniquely defined
for any value of t,- c [0, 1] for j = 1, • • • , m. This completes the proof of Theorem 2.
Theorem 2 could be extended to higher dimensional space as was Theorem 1.
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4. A class of functions in $. If <p(t) is an analytic function Lemmas 1 and 2 show
that j = 1, Ti = t, and <p\ = <p. In this section we shall explore a class of continuous
functions in $ which are not analytic. We shall encounter two types of such functions.
One type has the property r = r,- = t,+1 , j = 1, • • • , m — 1, i.e., <p(t) = Ef-x <p*j(r) =
'p(j). Our series representation is very useful in this case since except for the development
with respect to r rather than t, i.e.,

<p(t) = E X <*i.vW + ]T),
v =0 i=0

the series representation is formally identical with that of analytic functions. For the
other type of functions, in which the r, are different, the series representation is less
convenient, i.e., in the form of equation (1.1).

A subclass of functions of the second type are the functions x(i), defined by dividing
the interval [0,1] into a finite set of I adjoining line segments and in each of these segments
defining t(t) to be a polynomial P<(0, i = 1, • • • , Z. Of course, since ir(t) is continuous,
Pi(t) are such that P,- = P,+i at their point of common definition. The methods in
this section are related to the methods used in the Lebesgue proof of the Weirstrass
approximation theorem.

Theroem 3. Let <p(r) = t' 2j™_0 A ̂ t", I a non-negative integer, then <p e <£(for
0 < k < 1) at any value of t, r 11, at which the series converges.

Proof: Let us first define the polynomials of order s:

o".(T) = T' X) A^t".
u-0

The polynomial sequence {crs (x)} is an approximating sequence to <p(r). Since <t,(t)
is an analytic function

c, > \v(t) — c,(r)l =

t\ < 1 we can write for 0 < k < 1;

<P(T) ~ X X <Xi.X<r,(k' + 1T) — <p(k' + 1r) + <p(k'+1 r))

> 111 oii,,(<rs{k'+XT) ~ <p(k'*lT))

Since lim,^„ e, = 0 in order to prove that <p(r) e $ at some t t I we want,

lim = 0. (4.2)X) X) <Xi.v(.<7,(k, + 'T) — <p(fc, + 1r))
5=0 i= 0

Using the series representation of <p(t) we get:

E E«<..(fc' + 1r)' ± A,(ki + irY
v = 0 i=0

(4.3)E H<Xi.,(<P(k' + 1T) — o-,(fc'+1r))
®=0 »=0

and since for the v = 0 terms we have:
lim |<p(Jct) — <7,(fcr)| = lim |<p(k2r) — a,(k2t) | = 0,
«—»co a—>00

We need only consider the sum in equation (4.3), from v = 1 to v = s rather than from
v = 0 to v = s. If we substitute the value of a.,, in equation (4.3) we get:

E E a.-..[<p(fc*+1T-) — c»(fc'+1r)]

*+1 \ //t+1

L g (2_k) W(k'+1r) - <T,(k>+1r)] _ 's V(k'+1r) - <r,(ki+lr)
,-o ku*iu-Y,i„ k'

(4.4)
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We will now take lim,_„ of equation (4.4). Since we will in the process create a
double infinite series it is convenient to rearrange the order of summation by changing
the index. Rearrangement will not affect convergence because the series in question
is a power series. We let n — s + 1 — v, then:

lim (2 -k)±S V(kty+~_rik'*lr)
•-♦co * = 1 i = 0 * v 2-. i a

= lim (2 — /c) 53 S
8 J + l-M T,E/« + (l+l)(l + l),' + l1 « + (»+! )(, + !) » + 1 A

K  T /± g-l + l
(t + 1) («+l-#i)

M=1 *=0 k

« + 1-M

= lim (2 - k)r' + 1 A,-i+i £ S k^'^'" = 0
a—>co ^ = 1 — 0

because 0 < k < 1 and therefore ^7-o k^~""+u+1)* converges. Similarly:

lim ̂  • feO _ lim r.+%_i+i £ 'Tk^— = o
a-*eo p = l *-1 = 0 (, + 1^~2>a1 *~>0° M=1 1"0

rC

y < — l

because 0 < fc < 1 and therefore y,"., S7~i~0 k 'a+<i+,)* converges.
Equation (4.2) therefore holds and:

<p(t) = 2
® =0 t = 0

Theorem 3 estabhshes that functions of the form:

<p{t) = ± P,(0(< - a,)27i
t =1

belong to where P<(0 are polynomials, 7,- > 0 and 0 < a, < 1. Such functions are,
of course, not analytic when 27are not integers. We write 27; to stress the fact that
we confine ourselves to real numbers. To show that <p e one can see that if 0 < a < 1,
then:

(t - a)2y = [1 - (1 - (t - a)2)]7 = (1 - r2)7 where r2 = 1 - (/ - a)2.

(1 — T2)y has a binomial series expansion which converges for 7 > 0, |t| < 1. Since
t2 = 1 — (t — a)2, 0 < a < 1, it is clear that 111' defines r e I', therefore by Theorem 3,
<p(j) = (t — afy t where x2 = 1 — (< — a)2, (J < k < 1). Theorem 3, also establishes
that Tm<p(r) e <3?', m is a non-negative integer, and therefore P(r)<p(r) e <3?' where P(r) is
a polynomial in r. It is clear that if Pit — a) contains only even powers* of it — a)
then P(t - a) = P*((t - a)2) = P*((l - r2)) and P(t - a)(t - a)27 e If Pit - a)
contains only odd powers of (t — a) then

P(t - a) = (t - a) P*{(t - a)2)

and

Pit - a)(t - a)27 = P*Ht - a)2)it - a)27+1 e

*Zero is assumed here to be even and not odd.
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*( t)

Fig. 1. Three joined polynomial segments

Since any polynomial P(t) in t, can always be written as a polynomial P(t) — ir(t — a)
it is clear that P(t)(t — a)2y t $>', and therefore <p(t) = E"-i -P<(0C ~ cn)2y< £ $'•

The restriction t 11' is a little too rigid. One might take maxi.1,...,„(ai — 1) < t <
mini_1,...i„(l + a;). In fact, since we generate values fc*+1T,- we do evaluate in
the entire region 0 < r\ < 1 — (t — a,)2 which may include negative values of t. For
the purpose of general unity we prefer to restrict t t I'. The series representation is
of particular convenience if

m

= E b,(t - ar<
t=l

where the 6, are constants. In this case the representation depends on only one r,
i.e., r2 = 1 — {t — a)2; and we have:

<p(t) = E Ml - (fci+1T)V'l
»«i J

t e | < k < 1.
An interesting class of function in <!>' are the function \p(t) defined by the polynomials

of orders,- > 2, i = 1, • • • , m, in the intervals [a;, oi+1], 0 = «! < • • • < am+i = 1,
where P<(ai+i) = P,+1(ai+1)* (see Fig. 1. where m = 3). To demonstrate that \p r ft>'
we first see that |< — a,| = [1 — (1 — (t — «.)2)]1/2 t Then any function

Vi{t) = Pt{t) \t - (4.5)

where Pf(t) is a polynomial. We now show that \p(t) has a representation in the form of
a linear combination of the <Pi{t). If so ip(t) t <£'.

We define the polynomials P<(i) and P''(t) by:

P.(t) = P,(a.) + (/ ~ adP'(t)

P'>(t) = P!(ai+1) + (t- ai+1)P'i'(t).

*Particularly interesting because many approximation procedures depend on joining polynomial
segments in consecutive segments.
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It is clear that \p{t) has the following representation:

m = P^oO - | £ [(f - a.+i) - |« - ai+a|]P,'(ai+1)

1 m

~ 5 D K< - «.){|/ - a.+i| P,"(0 - P:(a,+l)} - |* - a.IK' - ai+l)P'/(t) + P«a,+1)}].

This is true because:

A = -i £ [(* - o,){|< - ai+l|P."(0 - P.'(ai+1)}
^ » = 1

- - a. | {(< - altl)P,"(fl + P'(a.+i)}l
t-1

= (t — a)P'i(t) + X (t ~ a,)P,'(«i+i) for a, < / < a,+l
i-i

and

jB = -5 E ~ a.+i) + I' - ®<+i|]P'(°<+i)
Z »=1

t-1

= — ai+1)P'(aj+1) for a, < t < a,+l .
7-1

therefore for a( < t < a,+i

1^(0 = P,(a,) + A + P = P,(o0 + (/ - a,)P'i(t) + X) (a»+i ~ a,)P'i(ai+i)
7=1

= P^a,) +(t- a,)P'(t) + £ [P,(a,+i) - P,(a,)]
7=1

= « - a,)p;(0 + P,_i(a,) = (/ - a,)p;(/) + P,(at) = P,(0-


