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ON THE ASYMPTOTIC SOLUTION OF NONHOMOGENEOUS ORDINARY
DIFFERENTIAL EQUATIONS WITH A LARGE PARAMETER*
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Lockheed Research Laboratories, Palo Alto, California

1. Introduction. The determination of the asymptotic forms of the solutions to
homogeneous, linear, second-order, ordinary differential equations with a large param-
eter has been the subject of numerous recent investigations, most of which are based on
the method of R. E. Langer [1], The emphasis on the homogeneous equation is justified,
since the complementary solutions, used in the standard formula obtained by variation
of parameters, readily give a particular solution of the nonhomogeneous equation. When
the complementary solutions are known only to some level of approximation, careful
use of the standard formula will often yield a particular solution to the same level
of approximation. However, a more simple particular solution, to the same level of
approximation, may exist. In [2], such a particular solution, obtained by intuitive
argument, for the equation with a "transition point" is utilized. In [3] the solution of [2]
is shown rigorously to be the leading term of an asymptotic series representation of the
particular solution. Another approach, given in [4], to the equation considered in [2] and
[3] is based on a power series expansion of the non-homogeneous term; the main dis-
advantage is that a simple uniformly valid solution cannot be obtained.

In this investigation, an asymptotic particular solution is obtained for the non-
homogeneous form of the equation treated in [1], which gives the result of [2] as a
special case. This asymptotic particular solution has the same simplicity of form as
the asymptotic complementary solutions obtained in [1], The proof follows the line of
reasoning used in [5] for the homogeneous equation with a transition point.

The equation considered is

S + Vix) fx + Kkyx^q(x)r + r(x)]y = (kyx^qix))^^ g{x) (1.1)

on the interval 0 < x < L. The real constants are restricted to the values y > e, n >
— 1 + e, where e is an arbitrary, small, positive constant, independent of k, which may
be taken as fixed throughout the discussion. The number k, to be considered as the
large parameter, has a restricted argument e < arg k < t — e. The coefficients are
continuous and single-valued in the interval 0 < x < L and have the behavior**

PO) = ~ + °0), P'(x) = + 0(1);

*Received May 5, 1964; revised manuscript received November 9, 1964.
**In this note, the notation/(x; k) = 0{<p(x; k)) indicates that, for 0 < x < L — e, \f(x; fc)| < C\(p{x",

A;)| where C is a constant independent of the parameter k.
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q(x) = 1 + 0(x2), q'(x) = 0(x), q"(x) = 0(1); r(x) = + 0(1)

For definiteness, v will have restricted argument — x/2 < arg v < tt/2. The function
q(x) has no zeros in the interval.

Numerous other equations may be transformed into the form (1.1). Of particular
interest is the equation

u" -hpu' + [(kyxy~,q)2 + fu] = (ikyxy-1q)V-1) + (1-a)/2g

where

P = z + 0(x), P' = -4 + 0(1), f = 4 + 0(1),
»*/ Ju Jb

in which the constants a and/or /3 may be zero. This is identical to (1.1) with

y = x(a~1)/2u, v = P + 1 x a,

r = f + 1 ̂ 2° (- 1 — a + 2xp), yV = 2 - /3.

The equation with a simple "transition point," considered in [2-5], is obtained by setting
a = j3 = 0 and y = 3/2.

The nonhomogeneous term g(x) may be complex-valued and has the behavior
g(x) = 1 + 0(x2), g'{x) = 0(x), but has no zeros in the interval. It is intuitively evident
that a particular solution of (1.1) should have the behavior for e < x < L — e as |fc| —► <»

y(x) ~ xyll"1)g(x) (1.2)

An asymptotic form of the particular solution will be sought which has this simple
behavior (1.2) but which, in addition, is valid uniformly in the interval 0 < x < L — e.

2. Complementary solutions. The asymptotic solution of the homogeneous equa-
tion, (1.1) with g = 0, is discussed in [1]. Since the discussion in the next section of the
particular solution is an extension, an argument similar to that used in [5] for ob-
taining the complementary solution will be briefly given.

Bessel's equation

e:'(x) + ^ e;(x) + (1 - ^)e,(x) = o (2.1)

with the transformation

C,(X) = W(x)/t(x), (2.2)
where

X = X(x) = ky [ dt = kxy[ 1 + 0(af)], (2.3)
Jo

f'(z) X' X"2W) = ~p+ X ~ X7'

that is,

#-fe) exp[~U (?> -1)<2-4>



1965] ASYMPTOTIC SOLUTION OF DIFFERENTIAL EQUATIONS 195

becomes the equation

L[W] = W"(x) + vW'{x) + [(kyxy~lq)2 + r - Q]W(x) = 0, (2.5)

in which

Q{x) = r + v2 ^ = 0(1).

The equation L[£/(a:)] = R(x) has the solution

U(x) = W(x) + f G(\, r) R{t) dt, (2.6)

where
X = X(x), t = \(f)

G(\, r) = f [J,(X)Hi"(r) - J,(r)^"(X)].

Therefore (1.1) with g = 0, which may be written in the form L[y(x)\ = — Q(x)y(x),
is equivalent to the Yolterra integral equation

y(x) = W(x) - f* G(\, r) Q(t)y(t) dt. (2.7)

Consider the case W(x) = \p(x)Jr(\)- If the solution of (1.1) is written as

yl(x) = *(s)/,(X)/(s), (2.8)

then (2.7) immediately yields

Hence

\1(X)\ < 1 + , \f(x) ~ 1[ < |/(s)U*8, ,
where "max" denotes the maximum in the interval 0 < x < L — e, and

Q(xSi =

In particular

(x')2 max W 0

G(\, t)J,(t)t-1+2/" di

I/fa) Imax < 1 + |/(z)|ma*5l
so that (if 5i < 1)

|/(*)U < (1 - 50" •
Thus,

I/(«) - 1| < «i/(l - 50 (2.9)
The number 5i can be computed for a specific problem; of more interest is its be-

havior with respect to k. It is easily seen that
^2(7-l)/7

(X')
— = o(r2/T).
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Furthermore, for Re v > e, 0 < |r| < |X|, arg t = arg X, and e < arg X < r — e,
the following inequality holds

G(\,
J A) < C1 +

For 7 > 2,
/»X J —1+2/7 I /»1 /»«

I [r+wH-/. ''i""""1'! + /
2

-2+2/71 I I _ 7d |r| 2(7 - 2)-

Thus,

X -1+2/7

Tirr\dT+ Mr1Jo 1
<

2^2) fOT 7 > 2'

log (1 + |X|) for 7 = 2,

ixri+2/T
for e < 7 < 2,

I- 1 + 2/7
from which follows the result

5, = Oik'1), (2.10)

where
)k\2/y for 7 > 2,

\k\/\og |/c| for 7 = 2, (2.11)

]k\ for e < 7 < 2.

The estimate also holds for Re i> = 0. With Eqs. (2.8), (2.9), and (2.10), it follows that one
solution of (1.1) with <7 = 0 is of the form

Vl(z) = *(:r)J,(X)[l + Oik'1)]. (2.12)

Similarly the second solution of (1.1) is found to be

y2(x) = *(s)#n(X)[l + 0(k~1)]. (2.13)

For the derivative, it may be shown that

yl(x) = £ + Oik'1)].

However,

*xW;(x) < IC |k\~2/y for 7 > 2,

[(7 |k]'1 for 7 < 2.

Hence the derivative of ^ makes a contribution that is of higher order than that of the
derivative of J,(K), and so

= *(s)xw;(x)[ 1 + (2-i4)
with the similar second solution

y&x) = \[/ix)\'ix) ̂  H(1\\)[ 1 + 0(01- (2-15)



1965] ASYMPTOTIC SOLUTION OF DIFFERENTIAL EQUATIONS 197

3. Particular solution. For g(x) ^ 0, the integral Eq. (2.7) becomes

y(x) = f G(X, r) t^g{t)TT'{t) dt - f G(X, r) dt (3.1)

The lower limit for the integrals containing Jv{t) will be chosen as x = 0, while the lower
limit for the integrals containing will be chosen as x = L — ej where ti is a fixed
constant in the range 0 < < e.

Integration by parts of the nonhomogeneous term of (3.1), denoted by I, gives

But, since all functions are uniformly continuous on the interval L— e<x<L — elt

and for Re v > 0 , n > — 1 + e.

If If H^r'dr| «/ + t » |«/+t<» T ~1+2/T dr

[ ^"Wr'
I J + t CO

dr
<

|C(|X|_)-l+2/T for « < 7 < 2,

[C for 7 < 2,

with a similar estimate for the integral containing Jv(r). Hence Eq. (3.2) is of the form

'Cyl)
where

/ = 7(a) [1 + 0(e~lkHL~"~')) + 0(&-|)], (3.3)

for ,>2, (34)

[_\k\ for t < 7 < 2,

V(x) = [fy 1 g(x)F„,,(\), (3.5)

with

K.A) = f J A) f+a dr - H?\\) £ dr
= s„,„(x) - 2"~1r(,t + !) r (" +2 +

= ^.,(X) - 2"-'^ ~l+l) r (M +2 + 1)e(1—,"/2 cos (v)*™'

s„,» and being Lommel's functions discussed in [6].
The function is bounded at X = 0 for n > — 1 + e and v > 0, and has the

behavior
c-i
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as |X| —* oo while e < arg X < x — e. Hence the nonhomogeneous term of (3.1) given by
(3.3) has the desired behavior (1.2) of a particular solution. Furthermore the constants of
integration in (3.1), leading to those of (3.6), were chosen so that (3.3) would be bounded
at x = 0.

Therefore, the particular solution of (1.1), denoted by y3, will be sought in the form

Uz{x) = V(x)h(x). (3.7)

Two numbers are defined:

52 = |v ~ 1

6a = (f |(?(X, r)-7^T)Q(t)V(t) dt/\v(x) |)i(t)r (t)

The form (3.7) when substituted into (3.1) yields the result

|A| < 1 + 52 + |^|mai53

from which follows (for 53 < 1) that

iau < r^f3-
We also have the result

|A — 1| < S2 + ,

which, with the result for |A|max , gives

|A - 1| < (3-8)

The behavior of S2 follows immediately from (3.3). If «, is chosen to be

e, = e - \kr log |&|,
which will be positive for sufficiently large |fc| , one obtains

S2 = 0(k;l). (3.9)
For S3 one obtains

Ss < <r. 101=max
" max

,2-2/7

(X')2 x/'K Ftf)d'
But

V)
■. 2-2/7

= 0(k~2/y)

and
rC|X|—a" for €<t<1.f rv\ -1+2/f pu.M jJ r(x,r)T fZwdT <
[C for l < y.
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Hence

Sa = (0(|fc|-2) for e < y < 1,
W|-2/*) for 1 < 7)

or, conservatively for y < 2,

S3 = (3.10)

From the results (3.7)-(3.16), it is seen that the particular solution of (1.1), which is
bounded at x = 0 and has the behavior (1.2), is indeed

2/3 (z) = + 0(k~\)}. (3.11)

By similar reasoning the derivative may be shown to be

y'z(x) = V'(x) [1 + Oik'l)].
However, for n ^ 1, a simplification may be obtained

V\x) = ^ [x^'^gix)] Y^FUm + «i(*MX)],

where

X' x^a(x)u,(x) = (M - 1) y   - 1, «,(X) =  
x i ix^m F*A)

But, since
l«i(«)| = 10(^)1 < C |fc|"2/7 |A|2/T ,

and

k(x)| < YTW
for |X| > 0 and e < arg X < -k — e, it follows that

<x) - J<W"'
lO(|fc|-2) for e<7<l-

Hence, the derivative of the particular solution has the form, for n I,

y'M = ~ [x^gix)] FUm + 0(k~l)] (3.12)

Since

x2-"^.„(x) ~ 1 - n
as |X| —» a> while e < arg X < w — e, the derivative approaches the value

y'i{x) ~ Tx [^<M"U^)]

in the interval e < x < L — t as \k\ —* t»,
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4. Application. Similar to the complementary solutions (2.12)—(2.15), the particular
solution (3.11) and its derivative (3.12) are in the form of a product of an easily computed
function of x and a function of the transformation variable X. Furthermore, certain
results of boundary value problems of applied interest, as in [7], may also be obtained
in the product form. For example, consider the general (asymptotic) solution of (1.1)

y{x) = A\J/J „(X) + B*H?X X) + [®'<"-l>y(«)]X,-'FJl.p(X). (4.1)

If it is prescribed that y(L — e) be bounded (so A = 0) and that y(x0) = 0, then y'(x0)
is given by

y'(xo) = ^ lxl(*-l)g(x0)]
4? h?\-k o)

xrv,„(x o) + Xi-'FiM

■ [1 + f1(x0)y2(Xo)], (4.2)

where X0 = X(x0), and where

\fx[x^-"g{x))
v,{x) = —25 i, „2(\) =

fx [xT("-u?(x)](l - n) ^ ff»'(X)^.,(X)
1 - Hll\X)F'^)

But

and hence

Vl(x) = 0(x2), K(X)| < C1 + |X|*

Vi(x)v2(\) = 0(kyl). (4.3)

The Bessel and Lommel's functions required for the solution (4.1) are generally
untabulated, although their behavior has been thoroughly examined [6]. However,
for the case arg X = 3x/4, which occurs in various applied problems, the real and im-
aginary parts of J,(X), X1-''jP,(,,,(X)i and are tabulated in [7] for
n = 0, 1, 2 and v = 0, 0.1, • • • , 1.0 for |X| = 1, 2, • • • , 10.

5. Conclusion. The solution (4.1) and such results as (4.2) have a simplicity of form
which yields considerable insight into the behavior of the exact solution of (1.1). Al-
though from a computational standpoint, it may seem that the use of the solution (4.1)
offers little advantage over a direct numerical integration of (1.1) since the evaluation
of the Bessel and Lommel's functions needed in (4.1) require, in general, an almost
equal numerical effort. However, an evaluation of the Bessel and Lommel's functions
for a set of values of the parameters X, v, and /i provides the approximate solution for a
class of equations (1.1); in contrast the direct numerical integration must be repeated
for every change in the coefficients p, q, r, and g. Furthermore, difficulties are encountered
with direct numerical integration in the neighborhood of x = 0 and when |fc| becomes
very large. On the other hand, the asymptotic solution becomes invalid for small values
of |fc|; the determination of the minimum allowable |fc| for a prescribed accuracy requires
the tedious numerical chore of evaluating , S2 , and S3 . Therefore the asymptotic
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and the numerical integration methods, with their respective advantages and dis-
advantages, offer complementary, not directly competing, means of evaluating solutions
of differential equations.
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