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WAVE PROPAGATION IN THE LINEAR THEORY OF VISCOELASTICITY*

BY

GEORGE M. C. FISHER AND MORTON E. GURTIN
Brown University

1. Introduction. Recently Herrera and Gurtin [1] have shown that in the linear
thoery of viscoelasticity the speed of propagation U of an acceleration wave is a solution
of the eigenvalue problem

(@i (O)nimy — pU*8:,)B: = 0. 1.1

Here G,,;;(0) is the initial value of the relaxation function G.;:;(t); p is the mass density;
n is a unit vector in the direction of propagation of the wave.

In this paper we show that the eigenvalue problem (1.1) governs not only the speed
of propagation of acceleration waves but also the propagation speeds of shocks and all
higher order waves.

Finally we remark that the theory presented here is not empty. Indeed, within
the context of linear viscoelasticity theory, Chu [2] has constructed a solution which
has a first order discontinuity (shock). In addition, solutions which contain discon-
tinuities of arbitrary order N are easily exhibited.

Notation. Henceforth, ® denotes an open region of Euclidean three dimensional
space; X = (z;, %3 , &3) is a generic point of ®; @ is a regular subregion of ® (called a
part of ®); 9@ is the boundary of @; n is the outward unit normal to d®. The scalar
t denotes the time. Given a function g of position and time we write g™ for its mth
time derivative, i.e., g™ (x, t) = d™g(x, t)/dt™.

Letters in boldface denote vectors. We shall, for the most part, use indicial notation
and Cartesian tensors. Thus subscripts have the range (1, 2, 3); summation over re-
peated indices is understood; subscripts preceded by a comma indicate differentiation
with respect to the corresponding Cartesian coordinate; §;; designates Kronecker’s
delta. We shall sometimes find it convenient to use the vector cross product x X y and
inner product x-y.

2. The equations of linear viscoelasticity. The fundamental system of field equa-
tions for the linear theory of viscoelasticity consists of:

(7) the constitutive relation

ouls, ) = [ :, Goin(, £ — 9) dyu(x, 9), @)
where
Giii = Gijie = Gy ;
(%) the strain displacement relation
2v;i(x, H) = u;,;(x, 1) + u;..(x, 8); (2.2)

*Received August 21, 1964; revised manuscript received October 22, 1964.
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(727) the law of balance of linear momentum
d
5[ puw nax = [ @t ndx+ [ o on) d. @3)

Here p is the mass density, while u; , v:; , 0;: , Gii21 , and f; are respectively the Cartesian
components of the displacement vector u, the infinitesimal strain tensor v, the symmetric*
stress tensor ¢, the relaxation function G, and the body force density vector f. The first
two equations are assumed to hold at every (%, ) e ® X (— «, «); the third holds for
every time ¢ and every part @ of ®. We write the law of balance of linear momentum
in integral form so as to include the possibility of discontinuous velocity and stress
fields.
Finally we adjoin the initial condition

u(x, t) = 0 whenever (x,{) e ® X (— =, 0). (2.4)

3. Viscoelastic waves of order N. Henceforth S, (0 < ¢ < «) denotes a one-param-
eter family of surfaces with S, C ®; 2 is the hypersurface

Zs={(x,)[xeS, , 05t < =}; (3.1
wy , for each x, is the point set
we = {t|xeS.}; 3.2)

N > 1is a fixed integer.
By a viscoelastic wave of order N we mean a solutionu, v, ¢ of (2.1), (2.2), (2.3),
and (2.4) such that:

(A.1) The displacement u is N — 1 times continuously differentiable on ® X (— =, »);
however its Nth order derivatives have jump discontinuities across =g but are
continuous everywhere else on ® X (— «, »). Moreover, each of these Nth
order derivatives is bounded on every compact subset of ® X (— o, »).

(A.2) The relaxation function G is N times continuously differentiable on ® X [0, =),
while the body force f and the density p are continuous and, if N > 3, N — 2
times continuously differentiable on their respective domains ® X (—», )
and Q.

(A.3) The hypersurface Z; is smooth and orientable.

(A.4) For each x, the set w, has measure zero.

Condition (A.1) is the requirement that =5 be a singular surface of order N in the
sense of Duhem and Hadamard.** Given a fixed point (x, t) ¢ 5, condition (A.3) im-
plies the existence of a normal v to Zg at (x, t). Such a vector is

v = (nv _U) = (nl y N2y, N3, _U)’ UZOn

wheren = (n, , ns, n;) is a unit normal to S, at the point x. The vector n is called the
direction of propagation; the number U is called the speed of propagation. For U % 0

*The symmetry of the stress tensor insures that the angular momentum is balanced.
**See Truesdell and Toupin [3], §187.
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we call any non-zero vector, which is parallel to the jump* [u’(x, t)], a wave axis.
Roughly speaking, condition (A.4) asserts that the surface S, , as it progresses, does not
pass through a given point x too many times.

Finally we use the following terminology: If N = 1 we call the wave a shock wave**;
if N = 2 we call the wave an acceleration wave.

4. Shock waves. Our first theorem shows that the speed of propagation of a shock
wave is governed by the same eigenvalue problem as that which arises in the study of
acceleration waves.

TuEOREM 1. Al a fized point (X, t) the speed of propagation U of a viscoelastic shock
wave, whose direction of propagation is n, satisfies the eigenvalue problem

(Giin(x, O)nn, — p(R)U*6:4)B: = 0. (4.1)

Moreover, the etgenvector 3 is an axis of the wave.
Proof. The integral statement (2.3) of the law of balance of momentum yields
the well known jump condition

- PU[u.m] = [oiln; . (4.2

If we integrate the constitutive relation (2.1) by parts and use the strain-displace-
ment relation (2.2) together with the initial condition (2.4), we find that

oui(®, ) = Gupni(x, Oue i (x, ) + f GO, £ — Jup(x, 9) ds. 4.3)
Upon substituting (4.3) into (4.2) we arrive at
- p@ U (x, )] = [G'.-ikz(x, Ou...(x, ) + j;‘ Gin(x, t — u..(x, s) ds:ln,- . (44)
From Maxwell’s Theorem' we know that the jump in the four dimensional gradient’

of the displacement u is parallel to the hypersurface normal v. Hence there exists a
vector @ such that

el ) -ommm -0 s

or equivalently,
ou;
[ax,] = Bm; , (4.6)
B
at
*We use the usual notation for the jump [g] of a function g across =g . That is

lox, O] = ( lim  g(x", ") — ( lim  g(z™, 1),

xt,t+)(x,t) x=,t7)—>(x,t)

—BiU- (47)

where (z+, t+) and (27, t) lie on opposite sides of =g .

**Actually, for N = 1, it is customary to call the wave a shock wave if [u-n] » 0, a vortex sheet
if [u®.n] = 0. We do not make this distinction.

tSee (3], §175.

By the four dimensional gradient we mean the operator (3/dz, , 3/0z2 , 8/3zs , 8/4t).
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Thus (4.6) and (4.7), when substituted into (4.4), yield
t
() Uzﬂ.‘ = Giu(x, O)nn,B, + [[ Gf;:’::(X, t — ux, (X, 8) d3:|ni . . 4.8)
)

Thus the proof reduces to showing that the jump in the integral in (4.8) vanishes. That
such is the case is an immediate consequence of (2.1), (A.1), (A.2), (A.4), and the
following lemma.

LemMma. Let g and k be functions on ® X (— o, ») with the following properties:

(a) g vs continuous;
(b) k s continuous everywhere except for a possible jump discontinuity across Zg ;
(¢) k is bounded on every compact subset of ® X (— =, ®).

Moreover assume (A.4) holds. Then the function A defined by
A, ) = f o(x, t — k(x, 3) ds
o
18 continuous on ® X (— e, ).

Proof. If we define
B(x) t’ 8) = g(xr t— S)k(x, 8)! (4‘9)

then

AR %) — Ax, ) = f B(x* 1* ) ds + f B(x* 1* ) ds — f B(x, t,9ds. (4.10)
1] t 0

We now choose (x, t) e ® X (— @, ) arbitrarily, pick 7 > O such that (-7 < ¢t < T,
and let @ denote a closed sphere centered at x and contained in ®. Further, we choose
(x* t*) e Q@ X (=T, T). By hypothesis, B(x*, t* s) is bounded for

E¥Xtx)e QX [—-T,T] X [0, £].

Hence the second integral in (4.10) tends to zero as (x*, t*) — (x, t). Next, by (4.9) and
our assumptions regarding g, k, and w, , we find that

B(x* 155 > B(x, t,8) as (x5 %) > (x,0)

for almost every s ¢ [0, ¢]. This fact and the boundedness of B, when used in conjunction
with Lebesgue’s Dominated Convergence Theorem, imply that

f B(x* 1% 5) ds — f B(x, t,5) ds
0 0

and hence A (x* t*) — A(x, t). This completes the proof.

5. Acceleration and higher order waves. Our main result is contained in the next
theorem.

THEOREM 2. The speed of propagation U of a viscoelastic wave is independent of the
order N of the wave and hence satisfies the eigenvalue problem (4.1), where again 8 is an
azxts of the wave.
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Proof. By Theorem 1 it suffices to assume N > 2. For such a choice of N, (A.1)
implies the N — 1 compatibility relations

[ax. (ufm')"“"):l - [at e )] ’ (.2)

where jk - - - I represent ¢ indices, jk - - - Isrepresent ¢ 4 1 indices, and ¢ +m = N — 1.
Using Maxwell’s Theorem for the jump in the four-dimensional gradient, we find

that for each integer m (1 < m < N — 1) there exists an mth order tensor ‘g whose
components satisfy
[8 ™ ] = W-mpg n (5.3)
ax' $,0keeel $ikecellls o
and
I:a__ ul™ :' = —W=mg LU (5.4)
at $.ikesel tikeeel . B
Thus (5.2), (5.3), and (5.4) imply
- (m”)ﬁeik---uU = ("‘)ﬁiiku-lnc ) (5.5)
and hence
"B keal(— U)™ = By -+ mn, (B: = VB)), (5.6)
which, because of (5.3), yields
(= O ™ M l] = B -+ nm, 5.7

where jk - - - Is indicate N — m indices.
Next, since N > 2, (2.1), (2.2), and (2.3) imply the displacement equations of motion

{Giin(x, Que i (x, 1)}, + {f G.(:kz(x b — up(x, s) ds}

+ p@fix, ) = p@u”(x, 9). (5.8)

We now differentiate (5.8) N — 2 times with respect to position, take the jump in the
resulting equation, and use (A.1), (A.2), and the lemma to verify that

Giin(X, 0)[Ur, 179 (X, 1)] = p(x)[ut('?z)m"'r(xr D] (5.9)
Consequently, (5.7) and (5.9) imply
Giiu(x, 0)Bmnmn, -+ n, = Uzp(x)ﬁ.‘n»nq R (T (5.10)

Thus, if we multiply (5.10) by n,n, - - - n, and use the fact that n;n; = 1, we recover the
eigenvalue problem (4.1) which completes the proof.

6. Longitudinal and transverse waves. We call a viscoelastic wave longitudinal
if its direction is parallel to its axis, i.e., if

nXg=0, (6.1)
transverse if its direction is perpendicular to its axis, i.e., if

n-g = 0. (6.2)
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THEOREM 3. Given a viscoelastic wave of order N, then the following three statements
are equivalent:

(1) the wave s longitudinal,;
(i) [V X u™™] = 0;
(iii) 3 = n[V-u?" "L

On the other hand, transverse waves are characterized by the next theorem.

TueoreEM 4. Given a viscoelastic wave of order N, then the following three statements
are equivalent:

(1) the wave is transverse;
Gi) [V-u"?] = 0;
(iii) 8 = [V Xu™"] Xn.

Proof of Theorems 3 and 4. By (5.3)

ng=[Vu®"], nXpg=[VXu""]; (6.3)
and hence, the identity
6 =n@B) —nX@X§4 (6.4)
implies
B =n[V-u""] —n X[V Xu""L (6.5)

Theorems 3 and 4 now follow as immediate consequences of (6.5). Equations (6.3) and
(6.5) are sometimes referred to as Weingarten’s First Theorem.*

7. Consequences of initial isotropy. In this section we suppress the variable x and
write G;;u(t) = Giinu(x, t) and p = p(x).

We call the relaxation function G;:(t) initially vsotropic if G.;.;(0) is an isotropic
tensor, i.e.,

Giin(0) = 3(G. — G1)6::6k + 3G1(8:6;1 + 8:10:). (7.1)

The constants G, and G, are respectively the instantaneous shear modulus and the in-
stantaneous modulus of pure compression.

The solutions to the eigenvalue problem (4.1), (7.1) are well known from linear
isotropic elasticity theory. Thus we have the following theorem.

TureoreM 5. If the relaxzation function is initially tsotropic then there are two, and
only two, posstble speeds of propagation (Up and T'r) of a viscoelastic wave. These speeds
are given by:

i) UZ = (G + 2G,)/(3p) in which case the wave s longitudinal,;

(i) Uz = G1/(2p) in which case the wave is transverse.

Conversely: if the wave is longitudinal, then U = U ; if the wave is transverse, then U = Uy .

Acknowledgement. This paper is based on an investigation supported by the Office
of Naval Research under Contracts Nonr 562(25) and Nonr 562(10).

*See [3], §175.
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