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LOW FREQUENCY ACOUSTIC OSCILLATIONS*

R. C. MacCAMY
Carnegie Institute of Technology

1. Introduction. This paper concerns interior and exterior Dirichlet and Neumann
problems in the plane for the equation

A u + ft2w = 0, (E),

where ft is a positive constant. This is the equation governing small time periodic
acoustic vibrations. The problem is to determine the behavior of solutions as k tends to
zero. In the acoustic problem this corresponds to low frequency oscillations, f It is of
particular interest to study the relation to the limiting problems, ft = 0, in which case (E)
becomes Laplace's equation. Many of the resulting problems can be solved explicitly
using conformal mapping. Results in three dimensions can also be obtained but are not as
interesting. We therefore confine ourselves to the plane.

Let 0 be a region in the plane bounded by a twice differentiable curve 7. Let the
closure of 0 and the complement of Qc . Let p denote the point (x, y), and f(p) a
function defined on 7. Suppose that

Kp) = E Up)^ ,
n = 0

the series converging uniformly on 7 for 0 < k < K with the /„ continuous.** We write
d(p; /; ft) and n(p\ J; k) for the solutions of (E) in 0 which satisfy

dfp; /; ft) = f(p) PtC, (1.1)
n,(jp; /; ft) = j(p), v exterior normal, p tC. (1.2)

d, is uniquely determined for 0 < ft2 < ft„, k20 the first eigenvalue, n is uniquely determined
for 0 < ft2 <k\. We write D(p; /; ft) and N(p; /; ft) for the solutions of (E) in satisfying
conditions (1.1) and (1.2). Uniqueness of D and N is guaranteed if we impose the radia-
tion condition,

D, N ~ c(d)r~1/2 exp (ikr) as r —> <*>, (1.3)

where r2 = x2 + if and d = arctan y/x.
Consider the limit problems obtained by setting ft = 0 while keeping conditions

(1.1) and (1.2), with j(p) = /0(p). The interior Dirichlet problem has a unique solution
d(p; /o ; 0). The interior Neumann problem has no solution unless

a(/o) = (2x)_1 J" jo dS = 0. (1.4)

*Received July 22, 1964. This work was supported by the Air Force Office of Scientific Research.
fMore precisely the wave length of the acoustic waves is long compared to an obstacle dimension.
**The restriction to even powers of k is made to simplify the formulas. The general case can be

obtained by obvious modifications.
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If (1.4) is satisfied then solutions N(p; f0; 0) exist but are only determined to within con-
stants. The exterior Dirichlet and Neumann problems have unique solutions D(p; /0; 0) if
condition (1.3) is replaced by,

D bounded as r —> °°, (1-5)

N — a logr = o(l) as r —> <» . (1.6)

We summarize the results here.

Theorem 1. There exists a K such that for 0 < k < K,
CO

(i) d(jp) f',k)= X) d™(p; > d0(p; f) = d(p; /„; 0)
m=*0

CO

(ii) n(p]f;k) — 2ira/Ak.2 = nm(p; f)k2m , A = area of 0,
m = 0

where nQ{p ;f) = n(p;f0; 0) for a certain choice of n(p; /0; 0). The series converge uniformly
in £2.

Theorem 2. There exists a K such that for 0 < k < K

(i) kN(p-, P)=EE Nit(p-, f)k\k log ky + i: Ni(p; f)k'
i1 »-l

with

Nm(p;1)=a, Nfrif) = iux + N(p;f; 0),
where n is a constant which is independent of f.

(ii) D(p; f;k) = (eE R„(p; f)ki~1(k log fc)'"1}/{Z Z Su(p-, log fc)'"1}
t=j )! \i-0 i-j )

with Rqq = Rio Soo ' -Sio — 0 and

lim D(jj; f; k) = D(p; f0 ; 0).
i-> 0

The series converge uniformly, after the singular terms are deleted, in any compact subset of Ol

2. Interior problems. Let u and / be continuous functions on Oe and y respectively
We set

||it|| = maxjt0t \u(p)\, ll/H = maxrt7|/(p)|.

We shall use the integral operators,

E(p-u) = -(2^)-x a u(q) log R dq, R — distance from p to q

G(p; /) = -(2f) 1 / /(?) ?) .

N(p; f) = -(2*-)"1 f f(q)n(p, q) dSa .J y
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Here g(p, q) and n(p, q) represent respectively Green's and Neumann's functions for
Laplace's equation in 0; n(p; q) is normalized by the condition

= 2tt/L, L = length of y. (2.1)
w,

If u is Holder continuous in 0 then E satisfies

AE = u(p). (2.2)

If / is continuous on y then G and N represent harmonic functions in 0 which satisfy

G(p;f) = Hp), pzy, (2.3)

N.(p; f) = M - (J Kg) dS^j/L, pty. (2.4)
We shall need also the estimates,

p|| < tf.lltill, \\G\\ < KMl ||iV|| < if3||/||. (2.5)
We prove Theorem 1 by an explicit construction of d and n. We begin with d. Define

functions Sn(p) and h„(p) recursively by the formulas

S0(p) = d(p; f0 ; 0), h0(p) = 0,

Sm(p) = —E(p; + hm-!), hm(ja) = G(p, fm - Sm).

We set

dm(p; f) = Sm(p) + hm(p),

and have

Adm = -dm-! in Q, dm(j>) f) = f„(p) on y.

Thus the series on the right side of (i) is formally a solution and it remains only to check
the convergence. It can be verified that if the fm are Holder continuous of a common
order r the hm will be also and so will the Sm in If we apply the estimates (2.5) we
find,

\\Sm\\ < X,(||«.-1|| + ll^-.ll) < «:x(||*—.11 + K2 H/^ll + K2 115„_i11)
< M 115m_,11 + N ll/m-ill, m> 1.

It can be verified by induction that

Sm+1 < n Er-' II/,- II + Mm+l 11 Sol I.
1=0

Since the series for / converges for 0 < k < K, we have ||/, || < RK~' and hence

5m+1 < NR{M + K~T + Mm+1 115011.

We also have

hm < K2(\\fm\\ + ||5m||).

It follows that the series (i) converges uniformly for sufficiently small k. The derived
series for the Laplacian is essentially the same and thus converges too. This completes
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the proof of part (i) of Theorem 1. The functions nm(p; /) are also defined recursively.
Set

n_, = 2tt<x/A, nm Sm + hm + cm ,

where

5„+1 - E(jp\ nm), hm = n(p; fm -

cm = —A 1 J" /m+I dS + JJ (Sm + hm) dq^.
Then by (2.2) and (2.4)

dnm dS^ , dK, , T-i [ (, 35„,\ , ~An„+1 = nm , — = — + — = /„ -L J^ dS.

Observe that

J ^ dS = JJ ASm dq = JJ n„-i dq = Acm_! + JJ (Sm-t + hm-,) dq = J fm dS,
hence dnjdv = fm .

It follows again that (ii) is a formal solution, and essentially the same argument as
before shows that the series converge.

3. Exterior problems. Exterior problems are most easily handled by integral equa-
tions. We begin with some results for Laplace's equation. Throughout this section p and q
denote points (x, y) and (£, t}) and R the distance between them. Consider the operators

A0(j>; a) = (27r)~' f <r(q) log R dSQ ,
J y

B0(p; a) = (2ir)-1 f a(q) £- log R dSa .

For any function <r which is continuous on y these represent harmonic functions in O
and in 0, . They satisfy the relations

lim (^)* = =Fa(p„)/2 + (2t)"1 / c(q) £- log R dSa = S&),

lim (.Boy = ±a(p0)/2 + (27r)-1 f <j{q) log R dSQ = T°±(a)
»-♦»« " y OVa

(4.1)

for p0 t y. The + and — signs indicate limits from 0! and 0 respectively. They satisfy
the relations

A0 — P log r = 0(r~'), 0 = (27r)_1 f <j dS as r —* <*= t
(4.2)

B0 = 0(r ') as r —> .

The use of the operators A0 and B0 for exterior problems is standard. We seek to
express N (p; /0 ; 0) in the form

N(p; j0 ; 0) = A0(p; a0).
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<j0 must then satisfy the integral equation

S+Vo) = /„ on y. (4.3)

It is easy to prove, using the uniqueness theorems and (4.1) that the homogeneous
equation corresponding to (4.3) has no nontrivial solutions. Thus S° can be inverted
in the form

= UP) + [ fo(q)S(p, q) dS„ . (4.4)
J y

We note the relation

A, = (27r)_1 J a0 dS = (2r)_1 J fodS = a. (4.5)

The Dirichlet problem is more complicated. We try

D(p; U ; o) = B0(p; io).

Then a0 must satisfy the equation

T+(u0) = /0 on y. (4.6)

The difficulty is that the homogeneous equation has solutions. Indeed B0(p; I) is iden-
tically zero in . It follows from (4.1) that 1 is a solution of the homogeneous equation
corresponding to (4.5). It is easy to see that constants are the only solutions. We must-
investigate the adjoint homogeneous equation. This is

S-(a) =0 on y. (4.7)

Let a be a solution of (4.7) and consider A0(p, <r). Equation (4.7) implies that A0(p, a)
is a constant m in U. Consider then An(p, a) in . The simple layer potential is continuous
across y hence we have A0(p, cr)+ = m. We map onto the exterior of the unit circle
in the w-plane with infinity mapping into infinity. Then A0(p, a) is carried into a harmonic
function A(w) in |w| > 1 which is equal to m on \w\ = 1. Moreover (4.2) shows that

A(w) = 13 log |u>[ + 0(|u>|-1) as w —> <».

The only function of this kind is /3 log \w\. Hence rrt = 0 and

A0(p, <r) = pA0(p),

where A0(p) is the inverse of log \w\ under the mapping. We conclude from (4.1) that

*(p) = M(p) = •

Note that

-I* dS 0.

We now apply Fredholm theory. The equation

T°M = h (4.8)
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can be inverted only if

f hi dS = 0 (4.9)J y

If (4.8) is satisfied the general solution of (4.8) can be written as

*<P) = h(p)+ f h(q)T(p, q) dSQ +m = (T°)~\h) + m, (4.10)
Jy

where m is a constant.
We determine D(p; j0 ; 0) as follows. Determine M0 by the relation

M° = (fy ioi dS)/r'

We can then form the expression

= (T°+r\1o - Mo)
and B0(p, a, ) = /0 — M0 on y. Hence

D(p'> fo ; o) = B0(p, aO + M0 .

We return now to equation (E). The analysis proceeds in the same way except that
the logarithm must be replaced by the fundamental solution of (E) satisfying (1.3),
that is,

G(p, q) = ~(j/2i)Hi:\kR)

where H™ is the Hankel function of the first kind. We have the development

G(p, q) = log R + log k + Go + {Z (Gn{kRfn log k + Hn(R)k*n(4.11)

where the Gn's are constants and the series converges uniformly on compact subsets-
We write /(p, q) ~ L{k) for functions which have series developments like those in
brackets on the right side of (4.11).

Setting

A(p; a) = (2x)-1 f <r(q)G(p, q) dS, ,
J y

B(p; a) = (2^ j c(q) £- G(p, q) dSa .

we have

A(p, a) = j8(log k + Go) + A0(p, a) + f <r(q)a(p, q) dSa ,
J y

B(p, a) = B0(p; a) + f <r(q)b(p, q) dSa ,
J y

(4.12)

where 0 is as in (4.2) and a, b ~ L(/c), A and B satisfy (4.1) with G replacing the logarithm.
We denote the corresponding boundary operators by S± and T± .
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We seek to express N(p; /; k) in the form A(p, a). This yields the integral equation

S+(c) = /

for a. Equation (4.12) shows that this may be written in the form

S+V) + [ *(q)e(p, q) dSQ = f(p) = £ f„(p)k*n ,
J y n =■= 0

where e ~ L(k). We invert this equation using (4.3) and interchange the order of integra-
tion to obtain

°(P) + f <?) dS. = £ (SlyW" ,
J 7 n = 0

where m ~ L(k). This equation can be solved by successive approximations. One finds

«)=Ei crmJT(k log k)n , <Taa(p) = (ST1 (U) = .
» = 0 m=n

We substitute this series into A(p; <j) to obtain N(p; /; fc). Thus,

kN(p; /; /c) = £ £ W"(fc log fc)* + £ A^/c™ ,
n = l n=«— 1 n = l

where

2V,01 = f a00dS = [ a0 dS = f fa dS, N> = Go [ fo dS + N(p) jo , 0).
v y f 1 J y

This proves (i) of Theorem 2.
We determine D(p; /; k) by a more involved procedure. By (4.1) and (4.11) we have,

T+(a) = T+(<r) + [ *(q)k(p, q) dSa , (4.13)
J y

where k(p, q) ~ L(k). We set

J(') = [/ *(p)(/ *(q)k(p, q) ds) dSv /(/ Mp) ds)j.

Consider the equation

T°+(a) = -J a(q)k(jp, q) dSQ + j(p) — M + J (a), (4.14)

where

M-(f ft ds)/(f US).
Suppose this equation has a solution <r. Then since the right side is orthogonal to ^ we
could invert T" as in (4.8) and infer that a also satisfies the equation

'(p) = [ <r(q)K(p, q) dSQ + (T°+rl(i -M) + m, (4.15)
Jy

where K L(k).
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We proceed as follows. Equation (4.15) can be solved, by successive approximations,
for any choice of / and m. We let a1 be the solution when / is set equal to zero and m equals
one. a2 will be the solution if m — 0. We let u{ = B(p, u*). Then by construction

Wi(p) = J (a1), u2(p) = / — M + J (<r2) on y.

We assert that J(cri) 9^ 0 for k > 0 and sufficiently small. Indeed, if it were zero, Ui would
vanish identically in . Hence

&)' - (t)~ - »•

If we require that k2 be less than the first non-zero eigenvalue for vanishing derivative,
Ui would have to vanish in and hence by (4.1) a-1 would be zero, a contradiction.
It follows that

D(p; /; k) = u2(p) + (M — J^2))Ul(p)/J(cl). (4.16)

The solution of (4.14) by successive approximations yields as before
CO CO

*(p) = E E *Lkm(k logky , (i = 1,2)
n-° m-n (4.17)

<Too = 1**00 = (TV)-\1o - Mo) = <Ti ,

where it is to be recalled that <rl = (T?)~'(f0 — M0 )■ We substitute these series in
J(<t) and B(p, a) and obtain,

oo oo

./(O = E E bLkm(k log k)' , b'o0 = bio = 0,
n = 0 m — n

ui — E E a'mnkm(k log fc)n , alo = B0(p, o-,).
m=0 m—n

We have also

m = E ,
m — O

where M0 has the same meaning as before.
We need some more detailed information concerning the various coefficients. Let y

be described by x = x(S) and y = y(S). Then for p = (x(S)y(S)) q = (x(a), y(a))
we have from (4.11)

^ log R- WMxiS) - x(a))y\a) - (y(S) - y(<r))x\a)]k2 log k + o(k2 log k).
(sV q (sV q

It follows that

/ °(q)k(j>, q) dS. = {g^-1 £ (x(a)y\a) - y(a)x\a)) dcr + o(l)}fc2 log k

= IG^Ak2 log k + o(k2 log k), J (a,) = 2(?17T-14/c2 log k + o(k2 log k). (4.18)

Now 0*1 must be a solution of (4.14) with / = M = 0. If we substitute the series (4.17)
and use the estimates (4.18), we infer that T°+(<rl) — o(k2 log k), so that T"(au) = 0
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or o-j j = r, a constant. We have pointed out earlier that,

f £- log R dS, = 0.
Hence we deduce that

M(p) = (27T)-1 f |(1 + rk2 log k){£ log R - 2G1[(x - x(tr))y'(ar)

— (y — y(<r))x'(<r)]k2 log kj^ da + o(k'2 log k) = 2Gir~1Ak2 log k + o(Jk2 log k).

Thus we have shown that

b] 1 = a], , (4.19)

and

lim Uj(p)/J (o-,) = 1.
A-»0

We now substitute our various estimates into equation (4.16). We have

d(p; 1; k) = EE aljr(k log k)n + {E Mjr - EE 0"(fc log fc)n}
n = 0 m = n

E E aLfcm_1(fc log fc)-1} / EE O-'ft log fc)-1
n = 0 m=n / ' V. n = 0 m = n

CO 00

= i E E log £)'"1 /EE log i)'-1 ,
W-0 »=J J7 \i-0 »=/ J

where -R00 = -Rio = Soo = S10 = 0 and

Rn/Su = lim D(p; /; k) = a™ + M0 - b200 = B0(p, o-,) + M0 = D(p; /„ ; 0).
Jfc-0

This concludes the proof of Theorem 2.
Remark. Suppose 0 is the unit circle and r and y are polar coordinates. Then the

problems we have discussed can be solved explicitly. When / = lwe have

d(p;l;k) = J0(kr)/Ja(k);n(p; 1; k) = —J0(kr)/hJi(k),

D(p; 1; k) = H«\kr)/H{0l\k)) N(p; 1; *) = -H£\kr)/kH["(k),

where the J are regular Bessel functions and the H Hankel functions. These examples
illustrate that the logarithmic terms are really present in the solutions of the exterior
problems.


