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ON DISSIPATION INEQUALITIES AND LINEAR VISCOELASTICITY*

By

M. E. GURTIN (Brown University) AND I. HERRERA (University of Mexico)

1. Introduction. The purpose of this paper is to derive restrictions which must be
placed on the relaxation integral law of linear viscoelasticity theory in order that it
satisfy certain "thermodynamic" requirements. This integral law, in the usual indicial
notation, may be written as1

°u{t) = f Gim(t ~ r)yi)\r) dr (0 </<«), (1.1)*
Jo

where o-<(-, , and GiiU are, respectively, the Cartesian components of the stress tensor,
the (infinitesimal) strain tensor, and the tensor of relaxation moduli; while 7*" is the
first time derivative of . If the material is isotropic, then (1.1) reduces to the follow-
ing pair of one-dimensional laws:

««(0 = [' Gl(t - r)el)\r)dr, (1.2)
J 0

<7kk(t) = [ G2(t — t)7^'(t) dr, (1.3)
Jo

where s,-,- and e,-,- are the deviators

Sn — <Ta iSn(Tkk , e,-,- = 'Ya iSijjkk ;

Gi is usually referred to as the shear relaxation modulus and G2 as the relaxation modulus
for pure compression.

Roughly speaking, our thermodynamic assumption is that work must be done to
deform a viscoelastic solid from its virgin state, i.e.

f °'iI(r)-y")(r) dr > 0 (1-4)3
Jo

for all sufficiently smooth y,; which satisfy 7,-,(0) = 0. We call constitutive relations
which have this property dissipative*

*Received July 20, 1964.
JWe tacitly assume that the strain tensor vanishes for all negative time.
2This law, with limitation to isotropic materials, was first formulated by Boltzmann [1] and was later

generalized to anisotropic materials by V. Yolterra [2], Coleman and Noll [3] have shown that (1.1) pro-
vides a valid first order approximation to the nonlinear theory of simple materials whenever the defor-
mation gradient, taken relative to a natural reference configuration corresponding to zero residual
stress, is "small" for all time. Further, Gurtin and Sternberg [4] proved that (1.1) is the most general
linear stress-strain relation which is continuous, non-retroactive, and translation-invariant.

!Since our constitutive relation is linear, (1.4) is equivalent to Drucker's [5] postulate. (Added in
proof: Coleman [6] has recently developed a fully general thermodynamic theory of materials with
fading memory. As one of his many results he proves that in isothermal and isentropic processes starting
from equilibrium, the inequality (1.4) holds whenever the path is closed, i.e. whenever t./(0) = ■y,-,-(<).)

4This terminology was introduced by Konig and Meixner [7] in their study of one-dimensional con-
stitutive relations.
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We show in Section 2 that the work done during a sufficiently accelerated or re-
tarded strain history is approximately elastic, the relevant elasticity tensor being
Giju{0) for the accelerated history, ) for the retarded history. We call Giiki{0)
the instantaneous elasticity tensor; Gaki{c°) the equilibrium elasticity tensor.

In Section 3, we prove our main result: If the stress-strain law is dissipative, then both
the instantaneous elasticity tensor and the equilibrium elasticity tensor are positive semi-
definite and symmetric,5 This fact, when coupled with previous results [9] concerning
wave propagation in viscoelastic solids, implies the following theorem: If the stress-
strain law is dissipative, then there exist three mutually perpendicular acoustic axes,
each corresponding to a real speed of propagation.

In Section 4, we demonstrate the connection between dissipative stress-strain laws,
functions of positive type, and characteristic functions. This connection allows us to
utilize several well known results from probability theory. In particular, we find that
the tensor of dynamic viscosities6

Kiikl(u) = / cosedGiikl{t) dt
Jo

is positive semi-definite whenever the stress-strain law is dissipative. We also prove
that the dissipativity postulate, when applied to the one-dimensional laws (1.2) and
(1.3), implies that Gp is continuous and Gfi(0) > [G^(£)| (j3 = 1, 2). The latter result was
given previously by Gurtin and Sternberg [4].7

In Section 5, we introduce the notion of strong-dissipativity, which is simply the
requirement that the work always be non-negative and vanish for all time only when the
strain history is identically zero. We then show that a direct consequence of this postulate
is the positive definiteness and (trivially) the symmetry of the instantaneous elasticity
tensor. These are precisely the conditions used by Edelstein and Gurtin [11] to establish
uniqueness for the mixed problem of linearized dynamic viscoelasticity theory.

The one-dimensional relaxation functions Gp (/? = 1, 2) of (1.2), (1.3) are observed
experimentally to be positive and monotone decreasing functions of time. In Section
6 we give counterexamples to prove that these properties cannot possibly be deduced from
the postulate of dissipativity, or even strong dissipativity.

Finally we remark that the question as to whether dissipativity implies that Gijki(t)
is symmetric8 for all time t > 0 remains open.

Notation. Throughout this paper &N denotes an N dimensional Euclidean vector
space. The term vector is used exclusively for an element of &N. Non-underlined lower

6A fourth-order tensor can is symmetric if c</« = Cttal positive semi-definite if cnu~/ijyki > 0.
(Added in proof: In a recent paper [8], which is based on the thermodynamic theory of [6], Coleman
proves that as a consequence of the second law: 6(0) — is positive semi-definite and both (?(0)
and (?(=>) are symmetric. Onat and Shu have shown us an unpublished manuscript in which they prove
that the symmetry of G(0) is implied by the work inequality (1.4). Their result, which was arrived
at independently, utilizes a completely different method of proof than ours.

6A thorough discussion of the relation of the dynamic viscosity to the other mechanical properties
is given by Coleman and Markovitz [101.

'Pp. 347, 349.
8Theoretical support for this assumption is usually based on an appeal to Onsager's principle. Rogers

and Pipkin [12] question the conclusiveness of these arguments and suggest possible experiments to help
settle the issue. Gurtin and Sternberg [13] prove that this symmetry requirement is a necessary and suffi-
cient condition for a certain reciprocal theorem to hold.
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case letters a, p, f, g, ■ ■ ■ represent real numbers or real-valued functions. Underlined
lower case letters f, y, <*, ■ designate vectors or vector-valued functions. The inner
product of two vectors is written d-y and |yI = (yy)1/2. Upper case letters C, F,
G, • • • stand for linear transformations—or functions whose values are linear trans-
formations—from &N into itself. We write CT for the transpose of C, tr C for the trace
of C, and ||C|| = (tr CTC)1/2 for the norm of C. Then |Cy| < ||C|| |y]- We call C symmetric
if and only if C = CT, positive semi-definite if and only if y'C'y > 0 for every vector y,
and positive definite if and only if y-Cy > 0 for every vector y 0.

By a history we always mean a function defined on [0, oo).
The word smooth is used as a synonym for continuously differentiate. Given a

function / defined on [0, oo )t then /C1) denotes its first derivative, /<2) its second deriva-
tive.

2. The generalized relaxation integral law. Accelerated and retarded strain histories.
Consider the generalized9 relaxation integral law £ defined by

£: <J(0 = [ G(t — s)ya\s) ds (0 < t < oo),
«•' 0 (2.1)

where y is the strain history, d the stress history, and G the relaxation junction. To avoid
repeated smoothness hypotheses we assume once and for all that the function G is
defined and piecewise continuous from the right on [0, °°). Further we introduce the
function space ft = {y I Y is continuous and piecewise smooth on [0, co), y(0) = 0},
which will be the domain of definition of the stress-strain law £.

For each strain history y t &, the work up to time t, which we denote by wr(t), is
defined by

wT(/) = [ <J(s)-y<u(s) ds (0 < t < oo), (2.2)
Jo

where d is given by (2.1). Hence

wy(t) = f [ ya\s)-G(s — t)y<u(t) dr ds (0 < t < oo). (2.3)
J o Jo

The first two theorems which we will prove assert that the work done is approximately
elastic for very fast, or very slow, strain histories. To make this precise we need the
following definition. Given a strain history y z CL, then ya e a is defined by

Ta(0 = r(«0 (0 < t < oo). (2.4)
We call y« an accelerated history if a > 1; a retarded history10 if a < 1.

Theorem 2.1. If y t Gi, then

limwT (-) = [ y(I,(s)-G(0)y(s) ds
a-»co a \OL/ J o

(0 < t < OO) .

Proof. We begin by choosing t e [0, oo) and y t d arbitrarily and by letting d(a, s)
denote the stress at time s corresponding to the accelerated history ya , i.e.

d(«, s) = [ G(s — A)y"'(X) d\ (0 < s < oo). (2.5)
Jo

9When N = 6 <C represents (1.1), S6 being the six dimensional space of symmetric second order
tensors. On the other hand, if N = 1, then £ characterizes either (1.2) or (1.3).

10The notion of a retarded history is due to Coleman and Noll [14],
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Clearly

rlu(s) = «r(1)M (o < s < 0°), (2.6)

and hence

U'T°(a) = Jo ^a' ^ = Jo d(c*'f)"1"1® ̂ s'

1'«>*•<»>•
(2.7)

Thus, since (7, y, and y<U are bounded on [0, f], and since (7 is continuous from the right
at the origin, Lebesgue's dominated convergence theorem implies

lim d(«, -) = f' G( 0)ra>(X) rfX = G(0)y(s) (0 <s < t)
a—»co \ QJ/ «/ 0

limwY (-) = f ya\s)-G(0)y(s) ds.
a—»oo a \OL/ J o

This completes the proof.
Theorem 2.2. Ij G (co) = lim,.,* (7(f) exists, then jor y t &

limu>T (-) = f yn\s)-G(co)y(s) ds
a-*0 °\a/ Jo

(0 < / < °o)

Proof. As in the proof of the last theorem we choose 11 [0, <») and y e ft arbitrarily
and let <s(a, s) be given by (2.5). Then, clearly, (2.7) is satisfied. Thus, if we again make
use of Lebesgue's theorem and the properties11 of G and y, we find that

lim Ja, -) = f G(<*>)ya\\) d\ = G(»)r(«) (0 < s < t)
a-0 \ a/ J 0

limu>T (-) = [ y<u(s)-G(<x>)y(s) ds.
a->0 a\CX./ Jo

The proof is now complete.
Theorems 2.1 and 2.2 help to motivate the following terminology: We call (7(0) the

instantaneous elasticity tensor; (7(<») (if it exists) the equilibrium elasticity tensor.
3. Dissipative stress-strain laws. In this section we will show that if the work done

(from the unstrained state) is always non-negative, then the instantaneous and equili-
brium elasticity tensors are symmetric and positive semi-definite.

We say that £ is dissipative if and only if

wT(f) >0 (0 < t < °°)

for every y t CL.
Theorem 3.1. If £ is dissipative, then (7(0) is symmetric and positive semi-definite.
Proof. Theorem 2.1 and the dissipativity of £ imply

[ Tn\s)'Cy(s) ds > 0 (0 < t < °°) for every yzd, (3.1)
Jo

"Notice that G is bounded on [0, co), since it is piecewise continuous and G( co) exists.
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where

C = <?(0).

Let r denote a piecewise smooth curve in S*v and let Jr C stand for the integral of
the linear transformation C over T; i.e. if <o(s) (0 < s < t) parametrizes r, then
Jr C = JJ coa>(s)-Cu(s) ds. With this notation (3.1) implies fr C > 0 provided the
initial point of r is the origin. Let the terminal point of r also be the origin.
Then /_r C > 0. On the other hand /_r C = — Jr C < 0. Thus Jr C = 0 whenever T
is closed and passes through the origin. Consequently, Jr C = 0 provided only that V is
closed. Hence C is the gradient of a scalar function <p on &N, i.e.

cz = W(0
for every 2; t S'v, where V is the gradient in SA'. Therefore C must be symmetric. More-
over, (3.1) and the symmetry of C imply that C is also positive semi-definite. The proof
is now complete.

Theorem 3.2. If £ is dissipative, then (?(«>), provided it exists, is symmetric and
positive semi-definite.

Proof. Theorem 2.2 and the dissipativity of £ imply that (3.1) is satisfied, where
now C = G(00) • The remainder of the argument is identical to the corresponding portion
of the proof of Theorem 3.1.

4. Connection with characteristic functions and functions of positive type.
Throughout this section g denotes a real-valued function on (— °=, <»). We say that g
is of positive type if and only if

M M

S — S„) > 0
m = l n = 1

for every integer M > 2 and every sequence of 2M real numbers Mi , v-i , • • • , Hm >
Si , s2, • • • , sM ■ We call g a characteristic function if and only if there exists a non-de-
creasing bounded function a on (— «>, °o) such that g is the Fourier-Stieltjes transform
of a, i.e.,

git) = J cos cot da (co) (—<»</<<»)

The function a is called a distribution function corresponding to g. Finally, we say that a
real-valued function / on [0, ») is of positive type {is a characteristic function} if and
only if the function g defined by g(t) = /(|<|) (-co < t < <») is of positive type {is a
characteristic function}.

For future use we now cite certain well known results concerning characteristic
functions and functions of positive type.

Lemma 4.1 (Bochner's Theorem). The function g is of positive type and continuous
if and only if it is a characteristic function.

Lemma 4.2. If g is of positive type, then

g(0) > 0, |^(0| < 0(0) (- co < t < oo)

If, in addition, g is continuous at the origin, then g is continuous everywhere on (— =°=).
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Lemma 4.3. Ij g is a characteristic junction which is absolutely integrable on (— co; oo)
and ij a is a distribution junction corresponding to g, then a is smooth on ( — c°, co) and

~j~ = f coswtg(t) dt (— co < w < a>).

Lemma 4.4. Let g be even on (— co, co) and piecewise continuous jrom the right on
[0, co). Then g is oj positive type ij and only ij

J j" j(s)j(r)g(s — t) ds dr > 0 (0 < t < °°)

jor every piecewise continuous junction j on {— <*>, oo).
Proofs of Lemmas 4.1, 4.2, and 4.3 can be found in Loeve [15]12. The proof of Lemma

4.4 follows from a slight modification of Mercer's Theorem.13
We now establish the connection between the foregoing notions and dissipative

stress-strain laws. Henceforth, for every %z&N,g( will denote the even function defined by

gS) = *-0(1*1)? (- oo < ; < co). (4.1)

Theorem 4.1. Ij £ is dissipative, then g( is oj positive type.
Proof. Given any piecewise continuous function / on [0, co) and any vector £ t &N,

the function y defined on [0, oo) by y(t) = £ /„ /(s) ds belongs to a. Thus, if £ is dissipa-
tive, then (2.3) and the fact that g( is even imply

f [ j(s)KT)Z'G(s - t)£ ds dr = \ [ f j(s)j(r)gi(s - t) ds dr > 0 (0 < t < co).
Jo *>0 A Jo Jo

Consequently

/ / ~ r) — 0 (0 < / < oo),

for every piecewise continuous function / on [0, co) and hence Lemma 4.4 implies that
is of positive type. This completes the proof.
The following result is an immediate consequence of Theorem 4.1, Lemma 4.2, and

the properties of G.
Theorem 4.2. Ij £ is dissipative, then for (0 < t < oo) and every t z £'v

(i) £•(?(<)? is a continuous function of t,
(ii) |?-<?(0?| < ?-<?(0)*.
This theorem gives us an alternative proof that (7(0) is positive semi-definite. Also

by (i) and Theorem 3.2 we see that whenever G(co) exists:

o < *•<?(»)* < t-Gm.
For the special case in which the dimension N of SA' is one, Theorems 4.1 and 4.2,

Lemma 4.1, and the above remark imply
Theorem 4.3. Ij £ is dissipative and N = 1, then

(i) G is continuous on [0, «>),
(ii) |<7(0| < <7(0) (0 < t < oo),

12Pp. 208, 206, 188.
13Widder [16], p.271.
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(iii) G is of •positive type,
(iv) G is a characteristic function, and, if G () exists,
(v) 0 < <?(») < G(0).

Theorem 4.4. If N = 1 and if G is either a characteristic function or a function of
positive type, then £ is dissipative.

Proof. We may assume G is of positive type since, by Lemma 4.1, it has this
property whenever it is a characteristic function. Then under this assumption Lemma
4.4 implies

/ / ^(ls — TD — 0 (0 < t < oo)

and thus

[ [ f(s)f(T)G(s — t) ds dr > 0 (0 < t < oo). (4.2)
J 0 ^0

Moreover, (4.2) must hold for every piecewise continuous function / on [0, oo). In
particular, if we let / = ya), where 7 e a (7 is a real-valued function since N = 1), then
(4.2) and (2.3) imply the dissipativity of £. This completes the proof.

Whenever G is absolutely integrable on [0, 00) we define the dynamic viscosity14
Kon (-oo, 00) through

K(u) — ( cos a>tG(t) dt (— 00 < to < 00) (4.3)
Jo

Theorem 4.5. If £ is dissipative and if G is absolutely integrable on [0, 00) then
K((i>) is positive semi-definite (-co < o> < 00).

Proof. It suffices to show that for every 5,

k^(w) = >0 (— oo<cl><°=).

By (4.3)

h 1 r
(u) — - cos dt (— 00 < u < 00),

Z J 0

where g( is the absolutely integrable function defined by (4.1). Next, it follows from
Theorem 4.1, Theorem 4.2, and Lemma 4.1 that is a characteristic function. Let

be a distribution function corresponding to g( . Then Lemma 4.3 implies is smooth
and d/do)[a;.(u>)] = 1/ttJck(u). Thus, since a( is a non-decreasing function, /c£ > 0, and
the proof is complete.

If £ represents the one-dimensional law (1.2), then K is the dynamic shear viscosity.
It therefore follows as a corollary of Theorem 4.5 that the dynamic shear viscosity is
non-negative provided £ is dissipative.

S. Strongly-dissipative stress-strain laws. We know from the previous section
that G(0) is positive semi-definite provided £ is dissipative. The next question we ask
is: What postulate assures us that G{0) is positive definite? One is tempted to assume
io4(£) > 0 whenever y does not vanish identically on [0, t]. However, such a postulate is

"See Footnote 6.
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not satisfied by an elastic solid for which wy(t) = 0 (at a fixed time t) when-
ever y(0 = f(0) = 0.

The notion of strong-dissipativity—which we now define—seems to us to be physically
reasonable. This postulate does not rule out the elastic solid and yields, as a conse-
quence, the positive definiteness of G(0).

We call £ strongly-dissipative if and only if it is dissipative and the only strain history
Y £ ft which satisfies

wy(t) = 0 for every t> 0 (5.1)

is the zero history

y(t) = 0 for every t > 0. (5.2)

Thus, roughly speaking, the assumption of strong-dissipativity is the requirement that
the work always be non-negative and vanish for all time only when the strain history
is identically zero.

Theorem 5.1. If £ is strongly-dissipative, then G(0) is symmetric and positive definite.
Proof. By Theorem 3.1 (?(0) is symmetric and positive semi-definite. Let us assume

that £ is strongly dissipative but that (?(0) is not positive definite. Then there exists a
? e S1, ^ 0, such that

i-Gm = o
which, in view of Theorem 4.2, yields

*■<?(/)? = 0 (0 < t < co).

Thus (2.1) implies (5.1) provided we define ye® through y(t) = t%. However y is not
identically zero and we have a contradiction. Hence G(0) is positive definite and the
proof is complete.

We now prove a theorem which will be of use to us in the following section.
Theorem 5.2. If £ is dissipative and if G is twice continuously differentiable on

[0, <») with G(0) positive definite, then £ is strongly-dissipative.
Proof. Clearly it suffices to show that, under the present hypotheses, (5.1) implies

(5.2). The proof of this fact follows almost verbatim the proof of an analogous issue
given by Edelstein and Gurtin [ll]15 which utilizes a method due to Volterra.

We first notice that for y t ft (2.1) is equivalent to

d(0 = (7(0)y(0 + [ Gm(t - s)y(s) ds (0 <*<«). (5.3)
Jo

Hence, if we substitute (5.3) into (5.1) and integrate by parts, we find that

\ y(0-G(O)y(0 + f Y(0 •<?"'(' - t)y(t) dr - [' Y(r)-Ga'(0)Y(r) dr
<6 Jo Jo

~ [ f y(t) ~Gm{t — s)y(s) ds dr = 0 for every t > 0.
J 0 J 0

Since G(0) is positive definite there exists16 a 5 > 0 such that y(t) •G(0)y(t) > 5 |y(0|3-

"Lemma 3, p.11.
16Take 5 equal to the smallest eigenvalue of G(0).
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Thus if we let u(<) = if (01 and

m = \ sup (||GC1,(0II + l|G<2)(OII)
0 (0< t < t o)

then /3(t0) < + °° and

u(t)2 < -sr(t)-cr(t) < m f w(/)o)(r) dr + f oo(t)2 dr
.Jo Jo

+ / / co(t)u(s) dr ds
J o J 0

(0 < t < to).

The last integral is equal to §[/„ w(t) dr]2 which, because of the Schwarz inequality, is
< t0/2 Jo w(r)2 dr (0 < t < t0). Consequently,

<o(*)2 < Kk) j co(/)co(r) dr + ^1 + J cc(t)2 (0 < t < t0). (5.4)

We now prove, by induction, that for every t s [0, <0]

where

Co(ty < P{Q [^f- (m = 0, 1, 2, ), (5.5)

p(t0) = sup aj(t)2 ,
(0 <t<t0)

K(to) = 0 (to) 3 + la-
This will complete the proof since the right-hand side of (3.5) tends to zero as m —» <»
and t0 is arbitrary. Certainly (5.5) holds for m = 0. We take as our induction hypothesis
that (5.5) is true for m — r. Since [rr/2w(t) — f/2u(r)]2 > 0, it follows that

2o>(i)co(r) < t r/2w{t)2 + r r/2a)(r)2

Thus, by the induction hypothesis we have for t, r t (0, <0]

u(t)u(r) < p(t0) Tr/2tr/2 . (5.6)

If we take t = 0 in (5.4), we see that w(0) = 0 and hence (5.6) also holds when either
r = 0 or t — 0. The induction hypothesis, together with (5.4) and (5.6), now yields

/f\2 x / . \ [*(^))fl (f\ <? f <? f \WW S P('o) /, j\j (0 < t < to),

which completes the proof.
6. Counter-examples. The (one-dimensional) relaxation functions encountered in

rheology are always positive and monotone decreasing. It is natural to ask whether
such a property could possibly follow from the assumption of dissipativity. The next
theorem shows that the answer to this question is "no."

Theorem 6.1. If the dimension N of S'v is one and if

G(t) = cos t (0 < t < co), (6.1)

then £ is strongly-dissipative.
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Proof. Since G(0) = +1 we conclude from Theorem 5.2 that £ is strongly dissi-
pative provided it is dissipative. By Theorem 4.4 £ is dissipative whenever G is a charac-
teristic function, i.e., whenever there exists a non-decreasing bounded function a on
(— oo, co) such that

G(t) = J cos ut da (o>) (0 < t < »). (6.2)

Clearly a defined by

fO (— a> < co < 1)

satisfies these conditions and the proof is complete.
The relaxation function G(t) = cos t of the last theorem has the property that (?()

does not exist. In the next theorem we give a counterexample for which G(°°) exists
and equals zero.

Theorem 6.2. If the dimension N of &N is one and if

G(t) = e~' cos t (0 < t < m), (6.3)

then £ is strongly-dissipative.
Proof. As in the last theorem it suffices to find a distribution function a such that

(6.2) holds, provided G is given by (6.3). It may be easily verified (with the aid of a
contour integration) that

a(w) — ~ f ^4 ~i~ ? d\ (— co < co < «=)
IJ0 A + 4

is such a distribution function. This completes the proof.
The form of G(t) in (6.3) was chosen for simplicity. Actually the theorem is valid

whenever a > 0 and

G(t) = e~"' cos bt (0 < t < 0°).
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