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FORMAL EQUIVALENCE OF THE NONLINEAR STRING AND
ONE-DIMENSIONAL FLUID FLOW*

By GERALD ROSEN (Southwest Research Institute, San Antonio, Texas)

Summary. By applying transformations to the dynamical equation for the longi-
tudinal vibrations of a nonlinear model string, we obtain a set of equations which
describes the one-dimensional flow of an ideal compressible polytropic fluid. Thus it is
shown that the nonlinear string problem is formally equivalent to the classical problem
of fluid flow analyzed by Riemann and by others.

Proof of the equivalence. The nonlinear wave equation

Zl/u = (1 + eyz)ayz: (1)

with constant « and e governs the longitudinal vibrations of a certain model string,
according to Zabusky and Kruskal [1], who have presented an analysis of the Cauchy
problem for (1). We shall show in this note that (1) expresses the exact mathematical
content of the set of three equations for the one-dimensional flow of an ideal compressible
polytropic fluid, namely, the set of equations [2]

pe + up, + pu, = 0,
pul + puus + ps = 0’ (2)

(p/0*) = const.

where p is the fluid density, p the fluid pressure, » the fluid velocity, k the polytropic
index (a constant parameter), and ¢ and z are the independent variables representing
time and distance. Consequently, the Cauchy problem for (1) and the Cauchy problem
for the set (2) are equivalent mathematical problems.

To prove our assertion, we first relate a fluid density p to the string deflection y in
(1) by setting

b=+ g¢., @)
P
where p, is a physical constant having the dimensions of density. Using (1), we obtain

(Z_) e i 1) [(ﬁ_)] ‘ @)

Next, we introduce a polytropic index k and a fluid pressure p by setting
k= —@+1), (& p/o" =po/ps,  (6)

where p, is a physical constant having the dimensions of pressure. Equation (4) now

becomes
o L) - 7
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which can be viewed as an integrability condition [3] that guarantees the existence of a
fluid velocity u satisfying
[P—l(kpopo)m]‘ —u, =0, (8)
u, + [p/(kpopo)' ). = 0. 9)

Moreover, Eqgs. (8) and (9) can be viewed as integrability conditions that guarantee
the existence of quantities z and ¢ satisfying

dz = [(kpopo)”z/P] dr + u dt, (10)
dé = (kpopo)'*u dz — p dt, (11)
differential conditions which imply that
(kpopo)'* dz = p dz — pu dt, (12)
dp = pudz — (pu’ + p) dt. (13)

Thus, if p, u, and p are considered as functions of ¢ and z (the latter interpreted as a
space coordinate), Egs. (12) and (13) yield

P + (Pu): = 01 (14)

(0w): + (ou’ + p), = 0. (15)

Eqgs. (6), (14), and (15) are equivalent to the set of Eqs. (2). Hence, Eq. (1) ex-
presses the exact mathematical content of the set of Egs. (2), and therefore classical
results for the latter set of equations provide an immediate solution for the Cauchy
problem for Eq. (1). In particular, the development in time of discontinuities in y,
for o 5 0 follows from Riemann’s theory of shock formation [4], that is, the development
‘in time of discontinuities in p for & % —1, by evoking the formal correspondence given
by Eq. (3).
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