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ON THE RADIAL OSCILLATIONS OF A SPHERICAL THIN SHELL IN THE
FINITE ELASTICITY THEORY*

By C.-C. WANG (The Johns Hopkins University)

1. Introduction. The radial oscillations of a circular cylinder for isotropic incom-
pressible elastic materials were discussed by Knowles** [1, 2], Truesdell and Noll [3].
This paper concerns a similar problem for a spherical shell. While the previous authors
attained exact solutions for both the general case of a shell with arbitrary thickness
and the limiting cases of a thin shell, we shall consider the thin shell case only.

It is known that these oscillatory motions belong to certain special cases of the
quasi-equilibrated motions found by Truesdell [4]. We shall reproduce part of his re-
sults in the next section.

Notations. We use spherical coordinated for both the undeformed and the de-
formed state of the shell. As usual we distinguish them by using majuscules and min-
uscules respectively.

Constitutive equation. We assume that the material is isotropic, incompressible,
and elastic. It is known that the most general representation*** of the constitutive
equation for this kind of material is

= —pI+ fB+ ¢B™, ¢))

where T is the stress tensor, p is the undetermined hydrostatic pressure, I is the identity
tensor, B is the left Cauchy-Green tensor of the deformation with respect to some
fixed undistorted reference configuration and f, g, are functions of the principal in-
variants of B. Since the material is incompressible, only density-preserving motions
are possible. If we pick the undeformed state to be the reference configuration, the
determinant of B has the value 1.

2. Quasi-equilibrated motions of a spherical shell. The general solution of the
equations of motion as shown in [4] is

P =4R+ A4,0= 20+ B, o=d+ C, 2)

where A = A({) is an arbitrary function of time, and B and C are constants. The ac-
celeration potential is

1 . A'2)

_.("3'—7_(_A +6’I‘3' (3)
For inflation of a spherical shell we take the positive sign in (2). For radial oscillations
set B = C = 0, whence (3) becomes

== =@+ ). 4)

*Received August 3, 1964; revised manuscript received November 24, 1964.

** Knowles [2] remarked that the sperical case can be treated similarly to the cylindrical case.

**x]f g stored energy function is assumed, as in [1], [2], certain compatibility relations of the func-
tions f and g must be satisfied. This assumption is not necessary for the following analysis. Except for
minimum smoothness requirements, f and g are arbitrary.
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The stress tensor in this case was shown in [4] to be
= —piI+ T, (5)

where p is the density and T, is the general solution of the stress system corresponding
to an equilibrium configuration. Therefore, substituting (2) into (1) and (5) we get

Ty = —stor + ) 4w +2 [ [ (=B - (- B2 @

where T(rr) is the physical component of the stress tensor, ¥/(f) is an arbitrary function
of time and ¢ is an arbitrary positive number. The arguments of f and ¢ are

4 2
I = first invariant of B = I% + 2_’2’
r E
rt | 2R’
II = second invar.ant of B = Iz + = )

Since the motion is density-preserving, the third invariant of B has the value 1.

3. Thin shell approximation. Denoting the ratios of the thicknesses of the deformed
and the undeformed shell to the corresponding inner radii » and R by 6 and A respec-
tively, by (2) we have

P =R+ A, 71 + 58)° = R°(1 + A)® + A. (8)
If we neglect terms of second or higher order in delta, (8) reduces to
s = R°A. (9)
Differentiate (9) twice we get
y=-35 &= 12(’;-')25 -3Z (10)

Let the difference of the pressures on the inner and outer surfaces of the shell be Q(¢)-
Then by (6)

Q) = p[2rm""6 + 2’8" + r*8" + 3r'(r' 6 + 18]

2 [T G- B - -]

Assuming that the response functions f, g are continuous in r, and using (9) and (10)

we get
o = {2+ 2[ (5 - B - (5 - B)o [Jrea. (12)

This is the equation of motion of the thin shell.
4. Free oscillations. For free oscillation we have @(f) = 0, hence by (12)

w2 (7 RN, _ (B | _
o’ + r [(R2 rt )f (R‘ r )g] = 0. (13)
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This equation can be integrated at once to yield the following energy equation:

. r 2 4 4 2 d 1
tor” + 2'/;3 I:(rl—éi - ffi—)f - (:_EZ - %)g:l ;f = 3o, (14)

where ¢ is the radial velocity of the inner surface at the undeformed state. Therefore
oscillating motion is possible if

r""R —1) >0, (15)

and if the equation

2 [ [ (- E)r - G- F)o] & - we (16

has two distinct roots, one on each side of the neutral position »r = R. In this case the
roots @ > R and b < R of (16) are the maximum and the minimum radii of the inner
surface in the oscillation. The period of oscillation 7 can then be obtained by inte-
grating along the closed curve on the hodograph plane, i.e.,
r=2[ % (17)
s T

where 7’ can be obtained from (14).

We remark here that for sufficiently small £, condition (16) is a consequence of
condition (15). Experimental results [5] seem to support the following restrictions
on the response functions:

f>0, ¢<0. (18)

Then it is readily seen that condition (15) is satisfied. Furthermore, if f stays away
from zero by at least a certain positive constant e for any deformation, then every given
¢ shall yield an oscillation.

5. Oscillation due to pressure impulse. Assuming that the shell suffers an impulsive
pressure at ¢t = 0, i.e.,

0 t <0,
QW) = { - (19)
Q t>0,
where Q is a constant. The equation of motion becomes
2 2 2 R4 4 R2
- Qé‘; = e’ +7 [(%5 - ;r)f — (% - TT)Q]. t>0. (20)

The initial conditions are
r =R, =0 at t=0. 21)
We can integrate (23) and get the following energy equation:

From (20) we see that /(0) < 0 (> 0) according to @ > 0 (< 0). Therefore, oscillating
motion is possible if the equation
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Q:);’(l - %) = f : [(;? - g)f - (% - g)g] dr (23)

has a positive root ¢ > R (< R) according to @ > 0 (< 0), and if the acceleration
r’"’ changes sign between r = R and r = a. In this case the period of oscillation is

I
127"

where 7’ can be obtained from (22). The neutral position is the root of

-0z 2 G- Ky - G- 5] @

where 7'’ changes its sign.

T=2 ) (24)

6. Oscillations of a sealed shell. Suppose that the inner and outer pressure of the
shell in the neutral position » = R is a constant P,. Let the outer pressure remain
unchanged when the shell is set to oscillate by some initial radial velocity £, while the
inner pressure varies according to some ideal gas law, say, PV” = constant. Thus
the inner pressure at the deformed state is

P= Po(ij)h : (26)

hence

Q) =P, — P = Po[l - (?)37]. @27)

The equation of motion becomes

- I—g’g?—Arzl:l - (fj)a"] = pr'" + -27; I:(%a - f—E:)f - (% - gj)g]. (28)

The initial conditions are
=R, v"=¢ at £t=0. (29)
Integrating (28) we get'

all -G]S0 -0
—so et [ 2] (B (- B e oo

For adiabatic processes it is known that 1 < v < 5/3. In this range, it is easily shown
that the first term on the right hand side of (30) is always positive except at the neutral
position » = R. Hence if (15) and (16) hold, then (30) yields an oscillation. Furthermore,
if @ > R and b < R are the roots of (16), then the corresponding roots a; > R and
b, < R of (30) for v = 0 lie between a and b, i.e.,

b<b <R<a<a. 31)

1If 4y = 1, the second term on the left hand side of (30) becomes 3 log r/R.
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The period of oscillation is
T =2 7y (32)

where 7’ can be obtained from (30).
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