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A CLASS OF REDUCIBLE SYSTEMS OF QUASI-LINEAR PARTIAL
DIFFERENTIAL EQUATIONS*

By CHONG-WEI CHU (Northrop Norair, Hawthorne, California)

1. Introduction. Quasi-linear partial differential equations, occurring frequently in
engineering problems, are often difficult to solve. This note presents a class of systems of
quasi-linear equations reducible to a single linear heat equation, and gives an example of
viscous fluid flow.

2. Reduction to a linear equation. The system of n equations under consideration
is of the form

dU{ , _ dUi ~ dUi dUi . , d2U tt r> /• • 1 \ /i\+ (•>) = !. •••.»> (1)

where summation convention is adopted with index i not summed; Fit G„ and //, are
functions of w,- at least twice continuously differentiable; k is a constant and R{ a con-
tinuously differentiable function of t, xx , • • • , xn . With some restrictions on F{ , G{ ,
Hi , and i£, , Eq. (1) can be reduced to a heat equation in n dimensions.

Consider the transformation

(2)

corresponding to which the following relations are true:

dUi 2k d<t> d<t> 2k d2<f>Fi

F't

dt <p dt dXi <j> dt dXi

dUi Ik d<j> d(j) 2k d2<j>
dXj <p dXj dXi <j> dXj dx('

-n, d2Ui 4k d<t> d<t> d(f> , 2k d2<t> d<j> 4k dcj) d2<f>
*' ~ 75 •>- nZ" -i.. I—75 ^7T H—75Ox,- Ox,- 4> dXj dXj dXi <j> dXj dxs dx{ <t> dx, dx,- dxt

2k d3<j> 4k2 F'j /1^ d<j> dcj) d2<t> \ /1 d<f> d<j> d2<j> \
<t> dXj dXj dXi <j>2 F'2 \<t> dXj dXi dXj dxj\4> dx,- dx< dx,- dxJ'

where prime denotes differentiation with respect to w, and index i is not summed.
Substitution of (3) into (1) yields, with i not summed,

({Q. j. jLY^ _ 7. 924> \ _
<t>2 W * dxj\dt dx, , dxJ

I ^ (C W d<t> d4> d2<ft Vl d<j> d<t> \ (A\
^ tfF? K i * ' dx, dx, dx, dxj\<t> dx, dx< dx. dxj' K )

Noting that the left-hand side of (4) is the partial derivative of a function with respect
to Xi, we set

  GiF'i - kF'/ = 0, F-Ht = 1, Ri = -dP/dXi , (5)
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where i is not summed, and rewrite (4) as

l~? (tn ~k Ti^r) - P1 = °>dXi [_ cj) \dt dXj dxj J

which can be integrated to give

ft = k + [c(<) + fcK (6)
a linear heat equation with linear heat generation. We have shown that solutions of a
system of n quasi-linear equations (1) can be obtained from the solutions of a linear
equation (6). It is noted, however, that (6) will not yield all solutions of (1) because of the
limitation imposed on Ft by the transformation^).

Thus, the system of equations (1) can be reduced to a single linear equation whenever
(5), which may be termed the "reducibility conditions," is satisfied. A necessary and
sufficient condition for the first two of (5) is that F( , G> , and H{ are derived from a
generating function /,-(«,-) by the formulae

F> = [ /<(«) du,
(7)

G, = fcd(ln /,•)/ dut ,

h< = /r1,

where i is not summed. A necessary and sufficient condition for the last of (5) is that the
Strokes tensor S for R{ vanishes identically

Sit = 7T - ^r' = 0. (8)dXi dXj

3. Navier-Stokes equations. As an example, let us consider the Navier-Stokes
equations for incompressible fluid flow

r u.§^i = _li£ . „ i i = i 2 3 rq^i
dt ' dXj p dXi dXj dx/ ' >>i

where w,- is the velocity component in the xt direction, p the pressure, p the density,
and v the kinematic viscosity, which is assumed constant. It is easily checked that the
reducibility conditions (5) are satisfied; hence through the transformation

2f dd .     <I0)

Eq. (9) reduces to a linear heat equation

dd d2d , p(t, xt , x2 , x3) n
~dt = vTx7^;+ 2pv 6■ (11)

It should be noted that the Navier-Stokes equation with no pressure gradient was reduced
to the heat conduction equation by Cole [1]. The one-dimensional case without the
pressure term was studied by Burgers [2] and Cole [1].
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It is permissible to view (11) as describing a mathematical model of some viscous
flow and to solve (11) as an initial value problem in infinite space with prescribed pressure

, Xi , x2 , x3); then the velocity field so obtained will need a corresponding source
distribution as given by

Q{t,xi,x2,x 3) = -2*f^

to satisfy conservation of mass. On the other hand, when the source distribution is
specified (this case being more physical), for instance Q= 0, Eq. (11) may be transformed
into a Bernoulli's equation through elimination of V20. This result is not surprising
since in combination with the continuity equation the viscous term in (9) becomes
vV X (V X u) that drops off under the assumption of irrotationality implied by (10).
Conversely, the nonlinear Bernoulli's equation for inviscid flow

dt 2 dXj dXi i~ p

may be converted into a linear heat equation similar to (11) by means of the equation of
continuity and a change of variable = In 0.

4. Some reducible equations. A few simple forms of (1) will be listed for reference.
For simplicity of presentation, only one-dimensional equations are given. Corresponding
to the generating functions / = 0, 1, e", nun~l, In u, —sin u, and cos u in (7), the following
equations belong to the reducible class (1):

du _ , (fu
dt~ dx2'

I+<■£-*©'+*£+«-««.*>•
dw „ du _ kn(n — 1) /duY , 3V R(t, x)
dt dx u \dx) dx2 nu i >

du n , du k (duY . d2U R(t, x)
Tt + *0n»-i) +'5? + !^.

^ /cos u\ sj, _ Jcot «VM' rtj /-=» AR(l x)
dt Vsm ul dx \tan u/\dxj dx \ sec ul

where R(t, x) is any function integrable with respect to x. It may be noted that in the
one-dimensional case transformation (2) imposes no restriction on u more than the
requirement for existence of solutions; hence every solution of the original equation
may be obtained from the corresponding heat equation. Likewise, the n-dimensional
systems may be derived from n generating functions, some or all of which may be identical.
The one-dimensional equations listed above may provide a good visualization of the
n-dimensional systems.
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