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ON CERTAIN RELAXATION OSCILLATIONS: CONFINING REGIONS*

BY

PETER J. PONZO AND NELSON WAX
University of Illinois

Abstract. Relaxation oscillations described by the generalized Li6nard equation,
d2x/dt2 + fij{x)dx/dt + g(x) = 0, with n » 1, are investigated in the phase and Li&iard
planes. When /(x), g(x), and Fix) = Jo f(u)du are subject to certain restrictions, a number
of analytic curves can be obtained in these planes which serve as bounds on solution
trajectories. Piece-wise connection of such bounding curves provide explicit annular
regions with the property that solution trajectories on the boundary of an annulus
move to the interior with increasing time, t. The Poincare-Bendixson theorem then
guarantees at least one periodic orbit within such an annulus. It is shown that the
periodic orbits which are isolated by this means are unique within the annulus, hence
orbitally stable. The maximum width of the annulus is of order /u~4'3, and the amplitude
bounds obtained for the periodic solution agree favorably with the known amplitude
for the specific case of the van der Pol equation d2x/dt2 + nix2 — 1 )dx/dt + x = 0.
The results are generalized to less restrictive fix), g(x), and F (x) than those first con-
sidered.

1. Introduction. Much attention has been devoted to the periodic solutions of the
generalized Li&iard equation

§ + m/(*) § + g(x) = 0, (ji > 0). (1.1)

(Cesari [1] contains an extensive bibliography.) Conditions for the existence and unique-
ness of non-zero periodic solutions have been investigated; Eq. (1.1) possesses non-zero
periodic solutions when f(x) and g(x) are suitably restricted. In particular, a unique
non-zero periodic solution of the van der Pol equation

g + ̂ -Df+ * = ° (1.2)
exists for all n > 0.

Equation (1.1) is equivalent to the systems

if = = ~^^>v ~ (1.3)
and

f = mQ/ - Fix)], dft = -g(x)/», F(x) = fo KO dk, (1.4)
which define the "scaled" phase (x, v) and Lienard (x, y) planes respectively.

Any initial condition (x(t0), dx{t0)/dt) prescribed for the solution of Eq. (1.1) defines a
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unique point in the phase and Licnard planes. The subsequent development in time
of x(t), dx(t)/dt corresponds to a motion of the point in these planes. The curves traced by
such motions will be referred to as trajectories, orbits or integral curves, interchangeably.
Periodic orbits are simple closed curves in the planes.

In this paper we study a class of relaxation oscillations, namely the periodic solutions
of Eq. (1.1) when n is very large. We construct explicit annular regions in the scaled
Li&iard plane with the property that the velocity vectors (dx/dt, dy/dt), associated
with points on the boundaries of an annulus, point toward the interior of the annular
region. Thus, once a solution trajectory enters the region it must remain therein; by
the Poincar6-Bendixson theorem, such an annulus contains at least one periodic orbit.
However, our annuli contain at most one periodic orbit, which is therefore unique,
within the annulus.

It is convenient, at first, to assume that

(1) jix) and g(x) have continuous first derivatives for all x;
(2) there exists an a < 0 and a b > 0 such that j(a) = jib) = 0 and fix) > 0

outside (a, b); F(a) > 0, F(b) < 0; L2(x - a)2 < F(a) - F(x) < L,(x- a)2
Li{x — b)2 < Fix) — F(b) < L3(x — b)2 in (a, 6), where , L2, L3 , Lt > 0
(see Fig. 1);

(3) xg(x) > 0 for x ^ 0;
(4) for F(x), and G(x) = Jx0 g(£)d£, that F(± °°) = ± G(± °°) = ;
(5) g(x)/f(x) is monotone decreasing outside (a, b).

Note that f(x) need not be even, nor gix) odd. Note also that integral curves encircle
the origin clockwise as t increases.

Assumptions (1) to (4) are sufficient to assure the existence of a non-zero periodic
solution of Eq. (1.1).

Fig. 1. The region within which F(x) is to lie is shown here.
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Sets of simple confining contours are investigated in Sec. 2. These, and other contours,
are used in Sections 3 and 4 to construct inner and outer boundaries of an annulus
which contains a periodic solution of Eq. (1.1). The annulus has a maximum width
of order n~i/3.

All of the above assumptions, except (3), can be weakened somewhat, as is done in
Sec. 5, where it is shown that the results of previous sections hold, with minor modifica-
tions. The boundaries of the annuli given in Sec. 5 still remain within 0(aT4/3) of each
other. LaSalle [2] constructed an annulus of maxumim width OfjiT1) for the Lienard
equation (g(x) = x), with j(x) subject to different assumptions than those given here.

Section 6 contains some numerical results.
2. Some confining contours. Properties of integral curves have been obtained

[2, 3] by investigating their relationship to the contours of constant energy

\(x,v) = v2/2 + G(x)/n2 = c (c = constant > 0)

in the scaled phase plane, or correspondingly the contours

4>(x, y) = 2/72 + G(x)/n2 = o

in the scaled Lienard plane. Both the family \(x, v) = c and 4>(x, y) = c are closed nested
ovals enclosing the origin: the larger is c, the larger the oval.

The time rate of change of <j>{x, y) along a solution (x(t), y(t)) of Eq. (1.4) is given by

Note that dcfr/dt is the scalar product of the velocity vector (dx/dt, dy/dt) and grad (#),
the vector which has the direction of maximum increase in y). Thus, if an integral
curve crosses a contour <p(x, y) = c, in a region It where d<p/dt > 0, then it does so in a
direction of increasing <f>, that is, toward the exterior of the oval. Hence, the oval bounds
exterior trajectories away from the origin: the contour will be called an "inner bound"
in the region R. Similarly, if d<j>/dt < 0 in some region R', then <j> ovals are crossed toward
their interior and are termed "outer bounds" in R'.

Let a<0 and /3>0 be the two roots of F(x) =0 outside (a, b), and assume G(a)<G(l3).
Then the oval <£„ : y2/2 + G(x)/n2 = G(a)/n2 lies entirely in a < x < /3. If F{x) were
such that —g(x)F(x) > 0 in a < x < /3, then 4>a would provide an inner bound on all
exterior trajectories. Note that this is the case for the van der Pol equation and, in
fact, <t>a is the best "universal" inner bound for equations of the van der Pol type (where
— gF> 0 in (a, (3)), valid for all n > 0 [4].

The <j> ovals are integrals of the Lienard equation when there is no damping (j(x)= 0),
or, equivalently of the differential equation

dy,dx ~ /[s'-fWl <2'»
when F(x) = 0.

Another family of ovals is obtained by letting F(x) = K, a constant, in Eq. (2.1).
Upon integrating one has

x(x, y) = (y — Kf/2 + G(x)/n* = constant. (2.2)



218 PETER J. PONZO AND NELSON WAX [Vol. XXIII, No. 3

The x(x, y) — c form a family of displaced or shifted, closed, nested ovals. Note that
along a solution trajectory dx(x, y)/dt = —g(x)[F(x) — K]/p.. Hence the x ovals will be
inner bounds wherever dx/dt > 0 and outer bounds where dx/dt < 0. In particular, if
x < 0, the x ovals are inner bounds where F(x) > K and outer bounds where F(x) < K.

We introduce now a new set of contours in the phase plane. From Eq. (1.3) one
has that

dv/dx = —j{x) - g(x)/n*v, (2.3)

which can be written as

v dv + g(x) dx/\\x + f(x)v dx — 0.

On integrating, this becomes

v2/2 + G(x)/n2 + J v dF (x) = constant.

Integrating by parts, one gets

v2/2 + G(x)/fj.2 + vF(x) — J F(x) dv = constant.

On setting F(x) = K, a constant, in the integral, one obtains the family of contours

v2/2 + G(x)/n2 + v[F(x) — K] = constant.

We consider a particular set of these contours, namely the one parameter family

*(x, v) = y2/2 + v[F(x) - F(u)] + G(x)/f = G(u)/J. (2.4)

The upper branch of such a contour satisfies

v = F(u) - F(x) + {[F(u) - F(x)]2 + 2[(?(«) - G(x)}/».2}'/2 > 0 (2.5)

for u < x < 0, in the second quadrant (see Fig. 2).

We determine the region in which these contours are inner bounds by a direct com-
parison of slopes. One has, from Eq. (2.4), that

dv/dx = -/+ F(m) = 1 + v~l[F(x) - F(u)} ~

Since [—f(x) — g(x)/i/v] is just the slope of trajectories, and is positive for 0 < v <
Vo(x) = —g(x)/n2f(x), in x < a, then the upper branch (Eq. (2.5)) of a 1If) contour
will be an inner bound wherever F(x) > F(u), as long as the SF contour remains below
v0(x). We will show below, however, that v = v0(x) is an outer bound in x < a. Consider
then the possibility of an intersection, from below, of a ^ contour with v = v0(x). All
trajectories between the ^ contour and v0(x) must converge to such an intersection,
which would make it a singular point, contradicting the uniqueness guaranteed by our
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Fig. 2. An excluding \j/ contour is shown in the phase plane.

assumptions. We conclude that the Mr contours provide inner bounds for F(x) > F(u).
In the scaled Lienard plane the ^ contours become

[y - F(u)f/2 - [F{x) - F(u)f/2 + G(x)/^ = G(u)/S

or, choosing the upper branch,

y = F(u) + {[F(x) - F(u)f + 2[<?(«) - G{x)]/f\U2 . (2.6)

Consider now the curve v0(x) = —g(x)//i2f(x), which, from Eq. (2.3), is the contour
of zero slope in the phase plane. We have assumed that g(x)/f(x) is monotone decreasing
outside (a, b), so that trajectories which start on, or cross v0(x), in x < a, will move to the
right away from and below v0(x). Thus v = va{x) is an outer bound in x < a, and similarly
in x > b (see Fig. 3). Notice that any monotone increasing curve lying on or above
v0(x), in the phase plane (x < a), will serve as an outer bound.

Other bounding arcs will be established on the next sections.
3. The outer boundary. Consider a Lienard trajectory which starts on, or below,

r„ : y = F(x) - g(x)/n2j(x),

the Li&iard plane representation of V0(x), for x < a. T0 furnishes an outer bound;
at x = a, however, T0 is singular. An improvement on r0 in the neighborhood of x — a
can be found by using a x oval.

The x ovals

x(x, y) = (y — K) 2/2 + G(x)//i2 = constant

are outer bounds, for x < 0,

x* = -g(x)[F(x) - K]/n < 0,
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x = b

-v0(x)

Fig. 3. The zero-slope isocline, vo(x), is shown in the phase plane.

that is, wherever F(x) < K. Thus, if one chooses K = max [F(x)] = F(a) (in x < 0),
then all integral curves will cross these ovals from the exterior to the interior, when
x < 0. The constant can be given by G(k)/1± and these x ovals represented by

x(x, y) = [y - F(a)]2/2 + G(x)/n? = G(k)/S . (3.1)

A member of this family will join smoothly* onto r0 if k is chosen properly.
The equations

(3-2)Yx = F(X0 - g(X1)/fi2f(X1) = F(a) + {2[G(k) - ^(XO]}172^

and

" - „|2[g(*7-Ml" -
determine the appropriate choice of k, ki , and the coordinates (Xi , Fx) of Pi (the
point of tangency); P, and the x oval, Xi , are thereby fixed.

The xi oval could be used as an outer bound to the y-axis, but it is too crude. Instead,
we use only the arc PiP2 of xi to P2 (to be determined) and continue from P2 with
another contour.

The integral curve through P2 satisfies

-g(s) < -ate)
n2[y - F{x)] ~ AY. - Fix)]0 < dy/dx = 2r Jy ' .. < 2

for X2 < x < 0, where (X2, Y2) are the coordinates of P2 . Now

y — F(x) > y — F(d) + L2(x - a)2 > Y2 - F(a) + L2{x - a)2 ,

*Here and elsewhere, "smoothly" is to imply a continuous tangent.



1965] ON CERTAIN RELAXATION OSCILLATIONS 221

from the assumed properties of Fix).
Let

M2 = max [— gt(a;)], a < x < 0,

and

7$ = [F, - F(a))/L2 > 0,

since F2 > Yt > F(a). Then

dy/dx < dyu/dx = — M2/L2 
M2 72 + (x - a)2'

The integral of this last equation which passes through P2 ,

Vu{x) - r. + -A- MM -
M 72-L2 L \ 72 / \ 72 / _ (3.3)

serves as an outer bound from P2 to P3 (0, F3).
We now determine the point P2 by requiring that y*(x) join smoothly onto xi at P2 .

The equality of slopes

l M2/L2 - a(X2)
M2 72 + (X2 - a)2 v{2[G(kO - G(X2)]\1'2

determines X2 . The xi oval and X2 being known, P2 is now fixed.
The point P3(0, F3) is obtained from Eq. (3.3)

(3.4)

Y3 = yu( 0) = Y2 +
M2

M272^2
tan a/72) — tan ^ (3.5)

The outer bound from P3 to P1 is an arc of another x oval, xs. From d%/dt = —g(x)
[F(x) — K]/n we have that dx/dt < 0, for x > 0, wherever F(x) > K. Choosing K =
F(b) (the minimum value of F(x) for x > 0), then dx/dt < 0 and the oval through P3
is selected to be the outer bound. Thus,

y = Fib) + {[F3 - F®]2 - 2G(z)/mT/2

is the outer bound from P3 to P4 , where this oval intersects y = F(x). Note that this
outer bound is a horizontal line segment, y = F3 , to within 0(iiT2). The point Pt has
as coordinates: X4 , the solution of

F(x) = F(b) + {[F3 - F(b)]2 - 2G{x)/W2 , (3.6)

and F4 = FiX,).
The outer bound from P4 to P5, a point on T0, is chosen to be a short (length 0(n~2))

vertical line segment, connecting P4 with the point P5 directly below it on r0 . Note
that trajectories cross this vertical segment from right to left idx/dt < 0 for y < Fix))
and it is thus an outer bound.

The outer bound now follows r0 from P5 to P6, which corresponds to Px . The point
P^ is chosen just as P2 was, etc.
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The outer boundary of the annulus is now complete (Fig. 4).
Approximate expressions for the various coordinates and contours can be found by

expanding the equations in Taylor's series and retaining terms in the appropriate orders.
To determine Pt we substitute X1 = a — A,/T2/3 and fcj = a — £/T2/3 in Eq's. (3.2)

and calculate that

A, = {\g(a)!/[/'(«)]2}1/3 + O0u"2/3) (3.7)

£ - 9A./8 + 0(m"2/3). (3.8)

We then find

Fi = F(a) + Ug\a)/\rmU3^i/3 + 0(»~2). (3.9)

For P.2 we set X2 = a + A2/T2/3 in Eq. (3.4) and obtain a quartic for the determination
of A2 :

OJW'
(^ + ^)2 = ^

where

W\ = //3[F: - F(a)]/L2 = h{g\a)/\V{a)\)U3/L2 + 0(^2/3). (3.11)

From the equation for the xi oval, we get

Y2 = F(a) + {2 10(a)| (A, + £)}1/2/T4/3 + 0(/T2).

From Eq. (3.5) we have, for P3 ,

F3 = F2 + {x/2 - tan_1(A2/IF2) }m~4/3 + 0(M"2).

Since the arc P3P4 is horizontal, to 0(/T2), then F4 = F3 + 0(/T2) = F(Xt). From

Fis. 4. The outer boundary of the confining annulus is shown in the Lienard plane.
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this relation, we find X4 by setting — B + e, where B is the smallest positive root
of F(x) = F(a). This gives

6 = [Yt - F{a)]/m + O0T2).
Then, finally,

Xi = B + fk)[{2 ld(a)l (Aa + f)},/2 + |x/2 ~ tan_,(V^2)}]M-4/3 + OGO.
(3.12)

Note that X4 gives an upper bound on the maximum positive z-excursion of the periodic
orbit. In Section 6 we will apply this bound to a particular equation. If we define A as the
maximum negative root of F(x) = F(b), then an analogous bound, involving A, may
be obtained for the maximum negative x-excursion of the periodic orbit.

4. The inner boundary. Consider an integral curve which starts at Pi(x,, yt),
Xi < a, yi = F(Xi). The ^ contour through

= [y - F(Xl)r/2 - [F(x) - F{Xl)f/2 + G{x)/J = G(x,)/J (4.1)
provides an inner bound on the trajectory through px , since F(x) > F(xi) in Xi < x < a.
Furthermore, this trajectory is exterior to all ^ contours for which xt < u < a. Hence
the trajectory through px will rise above the envelope to the family of ^ contours (see
Fig. 5).

Thus, an inner bound on the trajectory through px is the arc of the ^ oval to p2 ,
where the oval joins smoothly onto the envelope E. The envelope will provide a continua-
tion of the inner bound from p2 . Parametric equations for E are

E: y - F{x) = -g(u)/n2f(u) ^ ^

G(x) = G(u) - [g(u)/M]2 + [Fix) - F{u)]g{u)/M.

Fig. 5. The envelope, E, of the family of <p contours is depicted, in the Lienard plane.
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When u is given, Eq's. (4.2) determine a point, pu , on the envelope E) the locus of
such points is E. However, E will be an inner bound only at points for which d^/dt > 0,
namely when F(x) > F(u) for x < 0. Consequently, associated with each u is a ^ oval
(Eq. (2.6)), an excluding interval where F(x) > F(u), and a point, pu , on E. If pu lies
within the excluding interval then E will be an inner bound at this point, otherwise not.
Figure 6 illustrates the geometrical significance of Eqs. (4.2) where, for clarity, we have
used the scaled phase plane representation of E, that is

v = -g(u)/ti2i(u) = v0(u)

G(x) = G(u) - ~ [g(u)/i(u)f + [F(x) - F(u)]g(u)/j(u).

Let um be the maximum value of u for which (= p3) lies within the excluding
interval; E will be an inner bound for u < um . The coordinates of p3 (x3, y3) are obtained
by solving Eqs. (4.2) together with F(x3) = F(um). Clearly um < a and x3 > a (Fig. 7).

The equations which determine x3 , y3 and um are

y = Fix) - g(u)/n2j(u)

G(x) = G(u) - ^ [g(u)/Ku)]2 + [F(x) - F(u)]g(u)/f(u) (4.3)

F(x) = F(u).

The point p3 (in the scaled Licnard plane) at which E stops being an inner bound,
lies to the right, and above, the point (a, F(a)) where y = F(x) is a maximum.

It is important to observe that p3 is determined directly from the properties of
j(x), g(x) and the value of n, and not from p, and p2 .

The inner bound from p3 to p4 (0, yt) is obtained by bounding the slopes of the tra-
jectories in the interval x3 < x < 0. Since dy/dx > 0 in this interval (when y > F(x)),

FU)-F(u)

Fig. 6. A geometrical interpretation of the parametric equations for the envelope E, is shown, in the
phase plane.
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Fig. 7. The largest parameter value, um, for which the envelope is an inner bound, is illustrated in the
phase plane.

it follows that a trajectory starting at y(x3) rises monotonically to 2/(0). Since 7/(0) < Y3,
the outer bound at x = 0 (Eq. (3.5)), it follows that

y - F{x) <y - F(a) + Lx{x - a)2 < Y3 - F(a) + L,(x - a)2

from the assumed properties of Fix). Furthermore, a constant C can be found such that
—g(x) > — g(a) + C(x — a). Thus

dy/dx > dyL/dx = -5 v T jz ;xs-
J — gja) + C(x - a)
n2 Y3 - F(d) + Lx(x - a)

The integral of the last equation which passes through p3 is

Vl(x) = y3- tan 1(x — a\ , -Jx3 — a\j - tan I—J.

j. C 1+ 57—2 log
ZJbifi

7? + (X -- a)2]
- a)2 J' (4.4)_7i + ix3

where yf = [73 — F(a)]/Li ; yLix) can serve as a lower bound on the trajectory from
p3 to pt . The point p4 is determined from Eq. (4.4), at x = 0, as

V* = Vl{ 0) =2/3 — tan 1(— a/y) — tan  -j
7i

+ 2£?1oB
7i + a2

L7t + (*3 - a)2 J (4.5)

The arc p4p5 is also obtained by integrating a slope inequality. In x > 0, y > Fix),
the slope of trajectories satisfies

0 > dy/dx = ~ > , ~ 9(xl
n [y - F{x)} n [y0 - Fix)]
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as long as y(x) > y0 , where y0 is a constant to be chosen. Now ya ~ F(x) has a simple
zero at x=x0>0, where y0 — F(x0)) hence one may write [yo—F(x)]/(xo—x)=H(x)>0
for x > 0. We will choose ya > F(a), so that x0 > B, where B is the unique positive root
of F{x) = F(a). Hence H(x) > h(x) = [F(B) — Fix)]/(B — x) > 0, for x > 0. On setting
Mx = max [g(x)/h(x)], 0 < x < Xi , where Xi is the maximum positive z-excursion
of the outer bound (Eq. (3.7)), one has

dy/dx >   —
M (x0 — x)'

We may then choose as inner bound the integral of dy/dx = — x) which
passes through p4, namely

= v. + T1 log (^^).

This inner bound is valid until y = y0 (see Fig. 8). We choose y0 such that this inner
bound intersects y = y0 at x = x0(l — 1/ju2). Then 2/0 = 2/4 — 2ilfj log n/n2. Our inner
bound is thus

V = 2/4 +
Mi , (x0 — x"\7"l0B

from Pi(0, 2/4) to p5 whose coordinates are x5 = xQ(l — l//i2), 2/5 = 2/4 — 2Mx log n/^ ,
with 2/5 = F(x0).

The inner bound from p5 to ps (the point of intersection with y = F(x)) is chosen
to be an arc of the ^ contour, , through p5 . This contour is determined by finding
the value of the parameter, u5, from

2/5 = F(u5) + {[F(xJ - F(u,)f + 2[G(uJ ~ G(?*)]/*Y'2 ■ (4.7)
Then will intersect F(x) at p6 (xe , ye) where xd = u5, y9 = F(u5). This contour will
also join the envelope E, at p7 .

The remainder of the inner boundary of the annulus is constructed similarly, with
p6 corresponding to pi and p7 to p2 .

y = F(x)\ /

Fio. 8. The Lienard plane construction of the inner bound from pt to ps is given.
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The inner boundary is now complete. (Fig. 9).
Approximate expressions for the coordinates and contours are obtained as in Sec. 3.
We will first eliminate the parameter u from Eq's. (4.2) and obtain an equation

for the envelope E, valid for all u < a — e (e > 0 arbitrary). From the second equation
we determine that x = u + 0(m_1); thus, in the first equation we find

E: y = F(x) — g(x)/n2j(x) + 0(M~3), (x < a - e).

Observe that the envelope E lies only 0(/x~3) from r0 in this region (x < a — e); that is,
the annulus has width 0(p~3) here, and similarly for x > b + e.

To determine p3 we set x3 = a + 53/i_2/3 and um = a — vn~2/3 in Eq. (4.3) and
calculate

§3 = {\g(a)\/ma)\r/3 + 0(m"2/3)
T) = 83 + 0(fJ.~2/3)

and, consequently, we find

2/3 = F(a) + |[4p2(a)/|/'(a)|}1V4/3 + 0(m"2)-

For p4 we get, from Eq. (4.5)

2/4 = 2/3 + ^ K/2 — tan '(S3/TFi)}m 4/3 + O(log m/m2),lg(a)l
— i/3 I

where W\ = /i4/3[F3 — F(a)]/L, (F3 is obtained from the outer bound).
Since the arc is horizontal, to within 0(log n/n"), then 2/6 = 2/4 + 0(log m/m2)

= F(Xfs), which determines a:, .We find, as for the outer bound in Sec. 3, that

x, = b + -^Ju^g\a)/\rmU3KB) L6

+ W/2 - tan"1 (53/IF,)} ]m"4/3 + O(log „/„«). (4.8)

y
P4

Fig. 9. The inner boundary of the confining annulus is presented, in the Lienard plane.
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Observe that x6 provides a lower bound on the maximum positive x-excursion of the
periodic orbit.

5. Generalizations. The assumptions of Section 1 are needlessly restrictive. It is
possible to weaken them somewhat and still obtain an annulus of maximum width
0(n~*/3), as is done here.

Let a, b, A, B have their previous meanings, and let e > 0 be an arbitrary positive
number.

Assume that

(1) g(x) satisfies a Lipschitz condition in A — t<x<B-\-t with xg(x) > 0
for x 0 in this interval;

(2) a) f(x) is continuous in A — e<x<B-{-e;
b) /(z) >0inA-e<i<a, and b < x < B + «;
c) there exist constants Kl > 0, and K2 > 0 such that

f(x) > Kj(a — x) A — e < x < a

f(x) > K2(x — b) b < x < B + s;

(3) F(a) > 0, F(b) < 0, and that there exist positive constants , L2 , L3 ,
Lt such that

LJa - xf < F(a) - F{x) < L,{a - xf
Lt(x - b)2 < F{x) - F(b) < L3(x - b)2

in a < x < b.

Cartwright [5] has shown that j{x) continuous, g(x) Lipschitz, are sufficient for the
existence and uniqueness of solutions of the phase plane equation. In the Lienard plane,
y — F(x) is continuously differentiable.

Observe that the assumption of monotone g(x)/j(x) has been dropped; consequently,
neither T0 nor E now possesses the required bounding property. They will be replaced
by a new outer bound, , (or v% in the phase plane) and a new inner bound, E*, which
is the envelope of another family of ovals, Q.

Furthermore the explicit asymptotic computation of the points near x — a (and x = b),
using Taylor's series expansions, is no longer possible since j(x) and g(x) are not dif-
ferentiable. It will still be possible, however, to obtain bounds for these coordinates
and hence bounds for the amplitude.

5.1 The outer bound modification. Since — g(x) < — g(a) + D(a — x), D a positive
constant, and f(x) > (a — x) in A — e < x < a, then the curve

»•.(*) - " ?(?'I P(°r > =M - ".(*), A ~ e < x < a
M — x) n f(x)

lies on, or above, the contour of zero slope in the phase plane. Trajectories on v*0(x)
will have negative, or at most, zero slope; thus orbits will move to the right, away from,
and below, v'%(x), for the slope of v%(x) is positive. The contour v%{x), therefore, is an
outer bound in the phase plane and correspondingly, the curve

r* • v — F(t) 4- ~ x^ A — f < x < aT0 . y t(x) + _ x) , A e _x < a
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an outer bound in the Lienard plane.
The point Pf (which replaces P0 is the point at which the x oval of Eq. (3.1) is

tangent to .
The equations

F* = F(XV + g(«) + **) = F(a) + {2[G(k) _ G(x*)]y/2/n,
\X A i) (5 1)

dy
dx

- g(X*Q J_ - g(a) + D(a - XI)
Xl..Fl. m{2[<?(*) - G(X*0]1/2 1} ^ m2 KM - Z1)2

determine kt and the coordinates (X^ , Ft) of P\ .
The points P2 , P3 , Pi are determined as in Sec. 2. The point P% on Tt, , replaces

Pb on r0 ; the arc P%P% , following , replaces the arc P5Pe, and the point P% is deter-
mined just as P\ was. The modified outer bound is now complete.

5.2 The inner bound modification. It was remarked, in discussing the bounding
properties of the x contours, that these contours would be inner bounds as long as the
contours remained below v0{x) in the phase plane, or r0(a:) in the Lienard plane. If
v0(x) = —g(x)/f/f(x) is not monotone increasing, then v0(x) cannot furnish an outer
bound on trajectories (hence the use of v*0(x)), and the justification of the envelope, E,
as inner bound is no longer valid.

The requirement that g/f be monotone can be circumvented by introducing another
set of ovals, V.(x, y) = constant, whose envelope, E*, still provides an inner bound
on trajectories.

The 0 contours, a family of "shifted" ovals, are defined by

0: 2[y - E(u)]2 + G(x)/s = G(u)/p.2 , (5.2)

where the parameter u is to assume values u < a.
We discuss the half-plane x < 0; similar arguments apply for x > 0.
Along a solution trajectory one has that

rft = [y~ F^ ft + 9{X) ft1"2 = ~s(x)[F(x) - *■(«)]/„ > 0
whenever F{x) < F(u) for x < 0.

Observe that the largest x excursion of an 0 oval occurs at x = u, where y = F(x) = F(u).
Furthermore, if u = a, then F(u) = F(a) = 0, and this particular 0 oval reduces to
the contour <t>a .

Consider now a trajectory which begins (at some t = U) at a point p* on y = F(x)
(see Fig. 10). We assume that p* is exterior to 4>a , as shown. If we choose an oval
which passes through p'\ the corresponding value of u, Ui , will satisfy Mi < a.

We now follow the trajectory, in time, after this intersection with y = F(x). Observe
that the trajectory through p*{ will lie exterior not only to the above O oval, but to
all U ovals which provide inner bounds for the trajectory. Since all these ovals project
somewhat above the curve y — F(x), the trajectory through p\ will lie above the pro-
jections, for x < a. In particular the trajectory will lie above the envelope to the family
(5.2) in x < a (Fig. 11).
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y

Fig. 10. The excluding property of the il ovals is depicted, in the Lienard plane.

Let the envelope be denoted by E*. A parametric representation for E* is

* *= ™ ^

G(x) = G{u)_ j_taT
2m2L/(w)J '

Eqs. (5.3) furnish, for a given value of the parameter u, a point, qu on the envelope
E*. Figure 12 illustrates the geometrical significance of Eqs. (5.3). The point qu is the
solution to Eqs. (5.3) and the locus of points qu is the envelope, E*. Observe that an
excluding interval exists, as before, where E* is an inner bound.

The coordinates of qUm (xm , ym), the point at the edge of the excluding interval,
and the maximum value of the parameter u, um , are solutions of the system

F(x) = F(u),
y = F(u) - <?(w)/V7(w), (5.4)

G(x) = G(u) - ^ [g(u)/Ku)r .

\ ^
y=F(x)

Fig. 11. The envelope, E*, of the family of £2 ovals is shown, in the Lienard plane.
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y

F( 1 gU) ^ = FU)y= F(x)-

y = F(x)

Fig. 12. A geometrical interpretation of the parametric equations for the envelope E* is illustrated,
in the Lienard plane.

It is evident that um < a < xm . The point qUm corresponds to the point pUm = p3 .
Indeed, inspection of Eqs. (4.3) reveals that qUm = pu„ , that is, both E and E* terminate
at the same point, p3 , which is determined from the functions /, g, F, G alone and not
from other points on the inner boundary.

The continuation of the inner bound proceeds, as before, from p3 through to p5 .
From p5 , however, we continue now with a 0 oval which intersects F(x) (at p\) and
joins onto E* at p*7 . The inner boundary follows E* to p% , where E* ceases to be an
inner bound. The points pf and p\ are in correspondence, as are p* and p% .

The modified inner bound is complete.
5.3 Nested limit cycles. Figure 13 shows a characteristic curve y = F(x), in the

Lienard plane, for which we can apply the results of the previous sections. We assume
here that xg(x) > 0 for all x, within the region depicted in the diagram.

We may deduce at once the location of two closed periodic orbits (by generating
an annulus for each), namely the limit cycles marked c, and c3 .

It is shown in the appendix that Ci and c3 are periodic solutions which possess "orbital
stability", that is, all trajectories which begin (at some t = t) sufficiently near Cj (c3) will
converge, &st—> =°, to ci(c3). Indeed, the technique described in the preceding sections

Fig. 13. Nested limit cycles in the Lienard plane; Ci and c3 are stable, c2 is unstable.
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will locate only orbitally stable periodic solutions. However, an unstable non-zero periodic
solution exists for the situation shown in Fig. 13. We locate this unstable (i.e. orbitally
unstable) solution by generating an annulus for the trajectories in reversed time; that
is, we set t = — r in the Eq's. (1.4) and replace yby —Y (in order to maintain clockwise
motions in the plane), yielding

dx/dr = n[Y + F(z)], dY/dr = -g{x)/n.

Consequently, motions in reversed time are determined by the characteristic curve
F = —F(x), shown in Fig. 14. The limit cycle labelled c'2 is now evident. It is stable
(as t —> «>), and an annulus may be constructed for it. Returning again to direct motions,
the corresponding solution is unstable (as t —> «=), and is shown dotted in Fig. 13.

6. Numerical values for the van der Pol equation. For Eq. (1.2), fix) = x2 — 1,
F(x) = x /2> — x and g(x) = x. The zeros of f(x) occur at a = —1 and 6 = 1, and
F(— 1) = —/<'(1) = f. The constants A and B, determined from F(A) = —§ and
F(B) = |, are A = — 2 and B = 2. We also have F(— 1) — F(x) = (2 — x)(x + l)2/3
so that Li - max [(2 — x)/2>\ = 1 and L2 = min [(2 — x)/3] = f, in — 1 < x < 0.
Due to symmetry, L3 = Lx and L4 = L2 .

We calculate the upper bound on the amplitude of the periodic orbit. Using Eq's.
(3.7) to (3.11), we have the quartic (A2 + 0.596)2 = 9(A2 + 0.710)/2 which determines
A2 (the unique positive root), namely A2 = 1.63. From Eq. (3.12) we obtain the upper
bound as 2 + 0.857/T4/3 + 0(n~2).

The lower bound, from Eq. (4.8), is found to be 2 + 0.643^~4/3 + 0(log ix/ix).
These bounds are to be compared with the exact asymptotic expansion of the ampli-

tude, which is 2 + 0.779n~i/3 + O(log m/m2), [6].
If we treat the van der Pol equation according to the scheme outlined in Section 5,

we have /(a:) = x2 — 1 > 2(—1 — x) inz < —1, so that .K^ =2. Noting that Kx = \f(—1)|,
so that r* agrees, to within 0(jT2), with T0 at P, , we find that the upper bound on
the amplitude does not change from that given above. For the lower bound, observe
that p3 , where the envelope E* was terminated, is identical with the point at which
the envelope E was terminated. Consequently, the lower bound will agree exactly with
that given above. Indeed, if j{x) > \f(a)\(a — x) in A — e < x < a, so that Kx = |/'(a)|,
then the amplitude bounds determined from Section 5 will agree, to within 0(/T2),
with those computed from Sections 3 and 4, with |/'(a)| replaced by Ki .

Fio. 14. The unstable limit cycle, c2 of figure 13, is represented in reversed time, where it becomes a
stable periodic orbit, c'2.
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APPENDIX: Uniqueness of the Periodic Orbit Within an Annulus

We consider periodic solutions to the generalized Lienard equation, d2x/dt2 +
f(x)dx/dt + g(x) = 0, in the Lienard plane defined by dx/dt = y — F(x), dy/dt =
—g(x) where F(x) = jx0 f(£)d£. Note that we do not introduce a parameter p., since
our proof is parameter independent. We suppose, however, that jix), F(x) and g(x)
satisfy the conditions of Section 5 and that a confining annulus has been obtained.

Trajectories which begin (at t = 0 say) on the positive y-axis will return to the
positive 2/-axis after one revolution about the origin. This defines a continuous trans-
formation of the positive y-axis onto itself. Fixed points of this transformation identify
periodic orbits. To demonstrate uniqueness, we show that there can be no more than
one fixed point on that portion of the positive jy-axis which lies within the annulus;
that is, at most one periodic orbit can exist within the annulus. Since the Poincar6-
Bendixson theorem guarantees at least one periodic orbit within a confining annulus,
we can conclude that it is unique. We now proceed to the investigation of the trans-
formation.

Figure 15 shows two arbitrary trajectories, yx{x) and y2(x), within the annulus. Let
the inner trajectory, yx{x), intersect y = F(x) at x = x0, and set M = F(x„). It is clear
from the conditions on F(x) that (i) F(x) < M in 0 < x < x0 and (ii) F(x) > M > 0
in that portion of the annulus for which x > x0 .

Consider the function x(%, y) = (y — M'f/2 + G(x). We have, along a solution
trajectory, that

dx = (y- M) dy + g(x) dx = [F(x) - M] dy = g{x)[™ ~ dx .

Along yx(x) and y2(x),

x(H) ~ x(A) = f dx = f g(x)[M — F(x)] dx/\yl - F(x)],
J A Jo

y= F(x)

Fig. 15. Two trajectories within a confining annulus, in the Lienard plane.
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and

x(G) - X(B) = fdx = r ^)[M ~ Fix)] dx/[y, - F(x)],
J B J 0

respectively.
Since y2 — F(x) > yt — F(x), over the arcs AH and BG in (0, x0), then

x(G) - X(B) < X(H) - X(A).
One also has, along y2(x), that

x(J) - x(G) = [' [F{x) - M]dy < 0,
Jo

since F(x) > M and dy < 0.
Finally, as with the first inequality, we obtain

x(B') - X(J) < x(A') - X(H).
Adding the three inequalities, we have

x(B') - X(B) < X(A') - X(A).
Substituting the expression for x(x, y), and rearranging somewhat, yields

y\B') - y\A') < y\B) - y\A) - 2M[y(B) - y(A) + y(A') - y{B')]
so that

y\B') - y\A') < y\B) - y\A).
In exactly the same way, we continue the trajectories into x < 0 and show that

y2(B") — y2(A") < y2(B') — y2(A'), where A" and B" are the points on the positive
y-axis to which the A and B trajectories (respectively) return, after making one revolu-
tion. Consequently, we have

y\B") - y\A") < y\B) - y\A).
Note that this is a strict inequality.

Assume now that at least two fixed points of the transformation exist (implying the
existence of two or more periodic orbits within the annulus). On letting A and B be two
such fixed points we have y(A") = y(A), y(B") = y(B), contradicting the strict inequality.
Hence there is at most, therefore exactly, one fixed point within the annulus. The exist-
ence of a unique periodic orbit within such a confining annulus is thus established.
Note that the mapping is contractional, so that these periodic solutions are orbitally
stable.
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