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NONAXISYMMETRIC PUNCH AND CRACK PROBLEMS FOR INITIALLY
STRESSED BODIES*

BY
LEON M. KEER

Columbia Unaversity

Abstract. Using the theory developed by England and Green [1] for thermoelastic
problems for initially stressed bodies and a certain class of potential functions, a group
of punch and crack problems are solved. The requirement for solution is that the bound-
ary data be expressible as a trignometric series with the coefficient of each term of the
series a function of radial distance from the center of the punch or crack. The solutions
are obtained by inversion of Abel’s integral equation.

1. Introduction. In this paper two problems are considered. The first is concerned
with the indentation of a nonsymmetrical die, having an arbitrary, small temperature
distribution, into an initially stressed half-space. The second problem is concerned with.
the simultaneous opening and heating of a penny-shaped crack by a nonsymmetrical
pressure and temperature distribution. It is assumed that all boundary data are given
in the following series form:

2 1a(4) cos (00 + 6., (1.1)
where (r, 8, z) are cylindrical coordinates. The coordinate system is located in the center
of the disk, (z = 0, 0 < r < a), where a is either the radius of the die or of the crack.
The disk will therefore, define either the contact region for the punch and half-space
or the location of the crack. The axis of the punch coincides with the z-axis and defines
the center for the contact region of the indented half-space. The crack is in an infinite
region — o < z < o, The solution to each problem will depend upon unknown func-
tions that are obtained by one inversion of Abel’s integral equation.

The theory to be used in this paper is based upon the recent work by England and
Green [1], which is an extension of the work by Green, Rivlin, and Shield [2], and Green
and Zerna [3]. For this work we consider an ideally elastic body, in a state of zero stress,
strain and uniform temperature distribution. We consider the special case of an initial
large, homogencous deformation at constant temperature when two extension ratios
parallel to two rectangular Cartesian coordinate axes are equal. The unequal extension
ratio will be in the z-direction. The representation of displacement used here is that
given by England and Green in terms of three stress functions and their results are
summarized below. England and Green actually used four functions but in this paper
the fourth is not needed. Only the compressible case is used in this paper since in-

*Received October 22, 1963; revised manuscript received May 26, 1964. This work was performed
under Contract Nonr(G)-0018-63 with the Office of Naval Research. The author is now at North-
western University, Evanston, Illinois.



98 LEON M. KEER [Vol. XXIII, No. 2

compressible problems are mathematically treated in exactly the same way. Following
England and Green, the displacements are given as

v, y,2) + ewi(x, y, 2, (t=1,2,3)

where (z, y, 2) represent the deformed coordinates, v; are the displacements corresponding
to the finite homogeneous deformation and w; are the infinitesimal deformations super-
imposed upon v; . These are denoted by w, = u, w, = v, and wy; = w. Similarly the stress
tensor is 7'’ + e’*’, where er’'’ is the stress corresponding to »; . The temperature
is T + €I”, where €T’ represents the additional small temperature distribution super-
imposed upon T. The displacement solutions to the equations of equilibrium in terms
of three stress functions are as follows:

S SR/ OO

ox oz zx’
Ix, X
= = 4 2= 1.2
v Yy + Yy +1 1 (12
— 5. X2 9x
w_l‘lé)z +k?az +maz'

The corresponding cquations for the stresses, 7'*’, are as follows:

= [<1+kl> Kb+ k) m) ]
7P =0 [(1+k>‘9"‘+(1+1w)a"2+(l+ m) ] (1.3)

33 T 6?X
= (633701 ClaVl) 2 + (0531\2 6131’2) 2 + (Casm' — C3 lf) &E + w, T,
1

wherec;; (4,7 =1,2,3),1,m,v, (0 =1,2), 7,73, k,, ko, and w; are all constants defined
in reference one and which depend upon the three invariants of strain and upon temper-
ature. The three unknown functions must satisfy the following equations:

2,

2 0 Xa
V;Xa—i_ya a:? =01 (a'_' 11 2)

. rs 9° 9’ .

Vix+2gE=0  gE=T (1.4)
, 00 &
2 _— —— —_—.

Vi = 92 8y2

Here cartesian coordinates (z, y, z) are used with the z-axis corresponding to the axis
of the cylindrical coordinate system (r, 8, z) mentioned earlier. In the sequel the rep-
resentation for stresses and displacements as given by (1.2) to (1.4) will be used in
conjunction with appropriate boundary conditions for the determination of the func-
tions x, , X2 , and x. As a final development for this section, certain solutions to Laplace’s
equation will be given.

Consider the following boundary value problems defined for a half-space 0 < z < «:
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& = f.(r) cosm8 + B,) 2=0 0<r<a
'

— =0, z2=0 (a<r< =) (1.5)
v2<1>‘=0 0<z< )
" = s A =g0cs@o+8), (0<r<a
a<1> ¥ 0,0 =0, (@a<r< ) (1.6)
v2¢,2=0, 0 <z < »)

where a is the radius of a disk on the half-space, 0 < z < «, and (r, 6, 2) is a cylindrical
coordinate system whose center is at the center of the circle and the z-axis is perpendicular
to the plane of the circle. For convenience two functions of r and z only are defined
as follows:

®°(r, 9,2) = ®5(r, 2) cos (nd + B.),
r’Viesl = n’ds,

(@=1,2) 1.7)

where V2 is the axially symmetric part of the Laplace operator, V?. Then, if

B, 2) = f £4V2.00) di f & plal) T (er)e* dz,
0 0 (1.8)
082/02(r, ) = f 28 (1) dt f & s lald) T (r)e ™ dz
0 0

are representations for the functions, ®! and d®2/9z, the respective functions and their
normal derivatives defined on the plane, z = 0, are given as follows [4]:

1/2 2nh (t) dt
#(r, 0) = () f(r i ©0<r<a
a%, (2. d th,(1) dt
Boo| =@ L[ AU 0<r<a a9
=0, (a <r < =)
adf _ (2)” _k_mz__
0= @) [ 0<r<a
=0, (a <r < ) (1.10)
a <1>,-, 2\ 1 d [T k() dE
0=—(7—r> ol = A7 0<r<a

where h,(t) = k,(t) = 0fora < ¢ < . These representations were used by the author
to solve certain punch and crack problems for isotropic bodies [5]. The form of equations
(1.8) represent special cases of the more general functions given by Noble [6] and Copson
[7]. The values for these functions within the half-space, 0 < 2 < o, are as follows:

2"’I'(n + 1/2)r"

Blr,2) = 7'(n)

f Erh (D)Wt T, 2) dt (1.11)
1]
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with
Wit r,2) = f 1 — w7 + ttw)® + °1 7 du,
and
2 _ Tln + 1/2)r" [* 2nn: 2
0,9 = guipar o [ ROV 2 df (1.12)
with

\I/:(t, r,2) = f a - uz)"[(z + 'itu)2 + 7.2]—n—1/2 du

Higher normal derivatives on the disk may be computed, if they exist.

Having these solutions to two classes of problems in potential theory, one can now
solve the problems discussed earlier. It will be shown that by appropriate use of the
functions ' and &* the problems described earlier may be solved by elementary analysis,
requiring only the inversion of Abel type integral equations characterized by (1.9)
and (1.10).

2. Solution for punch problems. In this section we consider the problem of a circular,
rigid punch indenting a pre-stressed elastic half-space. The face of the punch may be
nonsymmetrical and lightly heated with an arbitrary temperature distribution. Complete
contact between the face of the punch and the elastic half-space is assumed. In the
previous notation, the boundary conditions are:

w = g,0) cos (nd + B,), z=0, 0<r<oq
7%=, 2=0, (a<r< ) (2.1
e Y =0, (0<r< )
T =f@) cosmb+p), z=0  (0=<r<a 2.2)
™ =0, z=0, (a<r< »)

It is understood that by this formulation of displacement and temperature distribution,
very general combinations of distribution may be obtained by using superposition
solutions.

Boundary conditions (2.1) are satisfied if

I

L
Il
o

(1+kl)ax‘+<1+kz)"X2+(z+) 0<r<w) (23)

62
(Casky — 031”1) 2 L (Casky — Ca1v2) F'

0 (a <r < o) (2.4)

It

r 9"
+ (csam — c3llr_:: + wy) _3§ =0, z

k. % + k, 9 + m o = ¢.(r) cos(nd + B8,), z2=0 ©0<Lr<a (2.5)

9z 9z
where 8°x/32° = T’ has been used. To satisfy (2.3) to (2.5), we now put
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r 1/2 yl/z 2
X1 = {axn l:r,z (1721) :I + 1 _;_ A ®, (r, ;:72)} cos mf + B.)

T 1/2 V;/2 2
X2 = {ﬁxn |:T, 2 (;;V—) ] 1+ % P, (r, ;?’f)} cos (n@ + B.)

and choose o and 8 so that (2.3) and (2.4) are satisfied identically in x. This is the case
if & and B are defined as solutions to the following pair of equations:

(2.6)

r 1/2 r 172
1+ k1)<_3) a+ (1+ kz)(_3> Bg=—-10+m),
T T2 (27)
(C3sky — czv1) <;%)01 + (csske — Cu"z)(&) = —(cssm — ¢s l:_j + wy).
The remaining boundary conditions reduce to the following:
ke ks ]aqvn__ X _
|:1 + kl 1 _I_ k2 9z - A 9z + gn(r)) z = 0) (O S r S a)
’®, _
022—0, z—O, (a<7‘< )
PVie, = n’d,, (2.8)

where A = akl(rz/rﬂ'n)l/z + ﬁkz(rs/"ﬂ/z)l/2 + m.

To solve this set of equations dx/dz must be determined on the plane, z = 0. Con-
sidering the second of equations (1.5), boundary conditions (2.2) and equations (1.8),
we see that a suitable integral for 77 that satisfies the second condition of equation (2.2) is

T = f £V (1) d f &7 v alad) T (ar)é e cos (n - B,), 2.9)

where ¢ = 2(r,/r;)""*>. We observe that when ¢ = 0, the first condition (2.2) becomes

1/2 a 1
@) [ =0, 0<rs<a. (2.10)

This integral equation is solved by elementary analysis to yield

2 1/2 d a l1-n ; d
ka(t) = —(;> a . Z;zi—(?;%ﬁg (2.11)
Alternatively,
1/2 n a
= %-%i_{?]%;— fo PORNOTL, 7, 2) dt, 2.12)
where

Wilt,r ) = [ (=@t 7

Remark. To compute the particular integral for x, one must twice integrate Eq. (2.9).
The result involves {¢, + ¢, where ¢, and ¢, are arbitary plane harmonic functions.
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This indeterminacy can be removed by imposing the condition that all stress compo-
nents vanish as B — «. The value for x and its first derivative will not, in general,
vanish which implies that components of displacement may exist at infinity.

1/2
( ) N _ f £ dt f a2 alad) T o(an)e *F da,
X. cos (nf + B.) = x, (2.13)

or after an integration by parts

1/2 ©
( ) D _ _ ity () f a2 a(a@) T (an)e ™ da
73 9z o

+ [ e [ @ e e de, (2.14)
0 0

where 1,(t) = [¢ kL(t) ds. On z = 0 this integral may be evaluated as follows:
-1/2 ©
(r_) % o g a) [ a7 (a0 (o) da
0

T3 0z
2\'"21 7 L) de .
+ (ﬂ_) rnj; (7'2 — t2)1/2' (2.15)

Thus the boundary condtion for the right hand side of the second Eq. (2.8) is known.
The function, x, , is determined by another integration of (2.14), and its value is

(:‘l) Xn = f t”+l/2ln(t) dt f a_l/an_l/z(at)J"(ar)e_a{ da
3 0 0
+ @@ [« pled) L) da (2.16)
0

Another representation for (2.16) is as follows:

r S (O ¢ o Y1 =T du
(ra) X = 75T ¥ ) f L dr | e zru) T

@) [0 venled L) day (217)
0

where the last integral of the equation (2.17) can be expressed in terms of hypergeometric
functions.

The problem is solved by finding the solution to the problem posed by equations
(2.8). A function that satisfies boundary conditions (2.8) is the following:

";" - f £4V2R3(0) di f &1 () T (cr) exp [—az/v"?]. (2.18)
1] 0

On the disk, z = 0 (0 < r < a), equation (2.8) becomes with the aid of equation (2.15)
and (2.18).

kl IC2 1/2 ] Znh (t)ﬂ_ _ (73)1/2 |: 1y
(1 +k 1+ kz)( ) f @ — 7"\ A — a"""l(a)

X [ a ooty da+ (3) L [ EHOA ] 00, @19
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The value of hl(¢) is found to be

(1 k14 k) hat) = (.) Al= L) + LOT+ |7 dt Jo (&F =1
(2.20)

where Eq. 8.11 (1) of reference [4] and the following form of Sonine’s first integral have
been used:

i/2 t 1l+l
LT (ed) = (2g> J(ar) dr
0

T (t ri)2
The value for &, , obtained by integrating (2.18), is
1/2 2yn—1/2
_(n _I'n) f 2n (1 —u) du
®, = (2) T+’ £ h,(t) dt . [( _,,2 T + ) (2.21)

Hence, the determination of ® and x is completed and the punch problem is solved.
The next section will consider an analogous problem for a penny-shaped crack.

3. Solution for crack problems. In this section we consider the problem of a penny-
shaped crack being opened in an infinite pre-stressed elastic medium. The crack is
opened by a small prescribed normal pressure, and in addition, the faces of the crack
are heated by a small nonsymmetrical temperature distribution. The work in this section
will directly relate to that of section 7 in England and Green. The boundary conditions
are written as follows:

® = g.(r) cos(nd + B,), z=0, 0<r<a

w =0, z =0, (a <r < «) 3.1
= B =0, z2=0, 0 <r < =)

T’ = f.(r) cos (n6 + B.), z2 =0, 0<r<a (3.2)
T’

az_O’ z =0, (a <r < =).

Boundary conditions (3.1) are satisfied if

o ) 9 ox _ e e a3
14+ k) az+(1+k2) az+(l+m)6z_0’ 2=0, (a<r< o) (3.3

9x

az=0’ z

kl%-l-kz%-i-m 0, @<r<e) @4
62X'>
(cil.‘ikl 031"1) 2 + (0337‘2 C:n”e) ? + (033m 03117'3/7'1) 2 + w; T’

= ¢.(r) cos (n6 + B.), z =0, 0<r<a). (3.5)
Put

1/2
X1 = {aXn[r Z(r';/7 1V1) /2] + 1 + k @,,(T 223 1/2)} cos (no + ﬁ")’
(3.6)

1/2
= {an[r, 2(ra/rws)'"’] — 1 + T &, (r, z:zf,’“)} cos n8 + B.),
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where

172 _ (lky — m) 1/2 (m — k)
) - kl — k2 ' B(ra/rlv) kl — k2

a(r:;/’rﬂ/]
r'Vad, = n’d,.

Then the remaining boundary conditions become

°®,
2= Xo.0) — V100, 2=0, (0<r<a
3.7
%:0, z=0, (a<r< =)
where
X_! — 633k| — C31 Ci'XkZ Cs1V2

A+ e A+ e
YX™ = Cas™ — Cailry/ry + wy 4 (Casky — Caw)ars/rivy + (Caske — Cawy) Bra/rivs.

These boundary conditions are satisfied with the help of the solution to the problem
given by (1.5). Hence, choose

- f £ di f @ T o1 pa(ad) To(ar) exp (—azvir?). 3.8)
0 0

By analogy with (1.10), the following integral equation is established:

) 1/2 e d r t2n+lh,2, ! dl
- L [TEED - xp - v, (3.9)

.

where

o = ~(2)" o [ 200 = T

is the solution to equation (3.9). This completes the determination for 6®,/dz. To obtain
&, one must formally integrate equation (3.8) with respect to 2. The integration is
easily completed when equation (2.17) is written in the form given by equation (1.8).
The result is

2P + 1/2)r" — (1 — ) du
7|-I‘(n +“—1) f h,,(t)t dt o [(2 —-1/2 + Ztu) + 7 ]n+l/2

Finally, the temperature problem as posed by equations (3.2) must be solved.
Considering the second Eq. (1.5), boundary conditions (3.2), and Egs. (1.8), we
see that a suitable integral for 7" in this case is

vy, = (3.10)

- f £R2()) dt f &2l T o(er)e ™ de cos (nf + B.), (3.11)
0 0

where ¢ = 2(r,/r5)""%.
When ¢ = 0, the first condition in equation (2.2) becomes

()w [ (;%"(?ﬁfz = 1.0), (3.12)
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where

k() = <g)m t‘“i / ' (n”f"(r) dr (3.13)

T t IS )1/2
Alternatively, the temperature may be expressed in the following way :

2'2I'(n + 1/2)"

= T ()

f PRV, 7, 2) di, (3.14)
0

where

=) du

o (@ + dt)® + P22

The computation of x, requires that (3.12) be integrated twice with respect to 2. Using

the same argument as before, the arbitrary constants arising from the integration may
be set equal to zero. One integration gives the following result for dx,/dz:

1/2 n a 1 2\n—-1/2
aXn — P(n)r 2n7.2 (1 - u) du .
Q) = ey |, RO @ [ e (8-15)

Vi, 7,2) =

A further integration determines x, as
ry _ mI@n+2m —1)
Q) - L TS

a 2m
f t"“nk,?,(t)(é%) JJi[—m, —n — m — L;n + 1;7°/8]. (3.16)
0

The values obtained for ®, and x, complete the solution to the crack problem posed
by boundary conditions (3.1) and (3.2).

4. Examples. To illustrate the theory developed in the earlier sections and to
describe some of the requirements that must be imposed when solving a nonsymmetrical
punch or crack problem, we first consider the following punch problem:

w = 6+ er cos 36, z2=0, 0<r<a
7% =0, z2=0, (a<r< o) 4.1
= =0, 2=0, (0=<r<=)
T = K — )" 2=0 (0<r<a 4.2)
T =0, z=0, (a <r < ).
From (2.10) and (2.11) the axisymmetric temperature problem is solved with
k() = K (’é)m . (4.3)

From (2.15) and (4.3) the normal derivative on the disk, z = 0 (0 < r < a) is found as

(ﬁ )1/2 a_X
rs oz
Having these values, one must now find the solution to the following boundary value
problem:

- K (’5')/ [ o f T a(a@) Jo(ar)a dee + ] ©0<r<a. (44)

z=0
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1/2
g =R[<£§) /1%+6+ercos30:|, 0O<r<a
z=0 1
‘:;7 -0, 2=0, (a<r< ®) (4.5)
Z =0
Ve = 0, 0 <z < )

where

_ ky _ k, ]—I
R_l:l-l—k1 1+ 4k

The solution is accomplished by direct application of (2.20) to yield

B = R[(%’)WAK( )W L@ - )+ ( )ma], (4.6)

- 2)1/2 § s
h3 = R(ﬂ- 3 el . (47)

The problem is solved except for restrictions which must be placed on the constants
K, ¢, and 8. They must be so chosen that the face of the disk makes complete contact
with the half-space on the disk, 2 = 0, (0 < r < a).

If the contact is incomplete, then use of the results given in part two of this paper
is not valid. A relation between the three constants must be found so that the condition

7% <0 (4.8)
is always met. From equations (1.9), the third of (1.3), and (2.6)

- B 6_4) — _BR {Af( ) (az _ r2)1/2 + Z 5((12 _ r?)—l/?
r ™

+ ;7? e[cos_' % + r(a® — r:')‘”?:' cos 30}, z2=0, 0 <r<a 4.9)

where B = (cssky — cav)/(1 + k )Vl/z — (casks — cav2)/(1 + 1‘32)1/1/2 Conditions that
ensure complete contact are

26 aAK( )
= L 5 ) =0 (4.10)
aAK & 16 =

;a+ 2 () T 3,220 (4.11)

Hence, if (4.11) is satisfied then there will certainly be complete contact between die
and half space.

The physical restriction to be satisfied for a crack problem is that the two sides
of the crack do not overlap when the crack is simultaneously heated and stressed. A
problem similar to the preceding will illustrate the method of solution. The boundary
conditions are as follows:

' = —¢, z2=0, 0<r<a
w =0, z2 =0, 0<r< w) (4.12)
72 =2 =0, 2 =0, 0<r< =)
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T’ = §r cos 39, z =0, 0<Lr<a
T’
62—0' z2 =0, (a <r < =).

The function 0%,/dz defined by (3.8) is determined once A2(t) and k3 (¢) have been found.
Using boundary conditions (4.12) and (4.13) with (3.10) the required functions are
found to have the following values:

(4.13)

2 1/2 t 2 1/2
Ri(t) = (;) X f r(f — )7V dr = (;) eXt, (4.14)
0
1/2 t 1/2
Rt = _(g) sY1 f P — )V dr = _(g) Y2 (4a1s)
T 0 T 15

To ensure that the displacements of the crack do not overlap one must compute their
value on the disk, z = 0, (0 < r < a). From (4.14), (4.15) and (3.6) the displacement
may be computed as

R'w = ;:'zeX(a2 ) % 8Yr® cos™ (5) cos 36. (4.16)
To ensure that the faces of the crack do not meet the following inequality must hold:
w > 0, 2=0, 0 <r<La. (4.17)
The inequality (4.17) is ensured if € and é are related by
e > 86Ya/15X. (4.18)
The solution is completed when k2(¢) is determined. From equation (3.13)
ki(t) = (2/7)'*85/3F. (4.19)

5. Conclusion. Using the results of certain Hankel transforms and the theory
developed by England and Green, one can obtain solutions to nonsymmetrical punch
and crack problems with nonsymmetrical temperature distributions for initially stressed
elastic bodies. The solutions will involve finite elementary integrals and may be obtained
by inversion of Abel’s integral equation.

Further nonsymmetrical problems that can be worked by the same methods are
steady state thermoelastic problems for transversely isotropic and anisotropic materials.
The analysis for both punch and crack problems will proceed in exactly the same way
as described in this paper.
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