-NOTES—

ON OSCILLATION NUMBERS OF SECOND ORDER LINEAR DIFFERENTIAL SYSTEMS*

By JOHN JONES, JR. (The George Washington University)

1. The purpose of this paper is to obtain sufficient conditions for the existence of a non-oscillatory solution $x(t)$ of

$$
\begin{equation*}
x^{\prime \prime}+F(t) x=0 \tag{1.1}
\end{equation*}
$$

where $x=\left(x_{1}, x_{2}, \cdots, x_{m}\right)$, and $F=F(t)$ is an m by m matrix which is a continuous function of t. Since m may be replaced by $2 m$, there is no loss of generality in assuming that the m^{2} elements of F are real-valued. Thus, the m components of the vector x on which F operates will be confined to the real field.

Consider only those solutions $x=x(t)$ of (1.1) which are different from $x(t) \equiv 0$. We use A. Wintner's [2] definition of the oscillation number F_{θ} of (1.1) to be the least value having the property that no solution vector $x(t) \not \equiv 0$ will become the zero vector at more than F_{θ} points t of θ, any t-interval of finite or infinite length and we will also require that each component solution $x_{i}(t)$ be simultaneously positive or negative between consecutive zeros on θ.

Let $x \cdot y$ denote the scalar product $\sum_{k=1}^{m} x_{k} y_{k}$ of the vectors $x=\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ and $y=\left(y_{1}, y_{2}, \cdots, y_{m}\right)$.
2. Non-oscillatory solutions of (1.1). We have the following results.

Theorem. Let the following conditions be satisfied:
(i) $F(t)$ is a real symmetric positive definite m by m matrix for $t \geq 0$;
(ii) $F(t)$ is non-increasing, i.e., if $t>s$, then $F(t)-F(s)$ is non-positive;
(iii) The determinant of $F(t)$ tends to zero as t tends to ∞;
(iv) $\int_{0}^{\infty} t \max _{i, i}[a(t)] d t<\infty, F(t)=\left(a_{i j}\right), \quad a_{i j} \geq 0$.

Then (1.1) is non oscillatory.
P. Hartman [1] has shown that (i), (ii), (iii) imply that (1.1) has a solution $x(t)$ for which

$$
\begin{equation*}
F(t) x \cdot x+x^{\prime} \cdot x^{\prime} \rightarrow 0, \quad \text { as } \quad t \rightarrow \infty . \tag{1.2}
\end{equation*}
$$

This implies that for $x(t)$ a solution of (1.1), $x^{\prime}(t)$ remains bounded as $t \rightarrow \infty$. Let us assume that (1.1) has a solution $x(t)$ for which (1.2) holds, and has an oscillation number F_{θ} which is unbounded. Let

$$
\begin{equation*}
\left\{t_{1}, t_{2}, t_{3}, \cdots, t_{\lambda}, t_{\lambda+1}, \cdots\right\} \tag{1.3}
\end{equation*}
$$

[^0]be successive zeros of $x(t)$ and let $x_{i}^{\prime}(t)>0$. Now $x_{i}^{\prime}(t)$ has a unique smallest zero t_{λ}^{*} for t in $t_{\lambda}<t<t_{\lambda+1}$.

Integrating (1.1) component-wise over ($t_{\lambda}, t_{\lambda}^{*}$) we get

$$
\begin{equation*}
x_{i}^{\prime}\left(t_{\lambda}^{*}\right)-x^{\prime}\left(t_{\lambda}\right)+\int_{t_{\lambda}}^{t_{\lambda}^{*}} \sum_{i, i=1}^{m} a_{i j}(t) x_{j}(t) d t=0 \tag{1.4}
\end{equation*}
$$

or,

$$
\begin{equation*}
x_{i}^{\prime}(t)=\int_{t_{\lambda}}^{t \lambda^{*}} \sum_{i, j=1}^{m} a_{i j}(t) x_{i}(t) d t \tag{1.5}
\end{equation*}
$$

Now $x_{i}\left(t_{\lambda}\right)=0$, for $(i=1,2, \cdots, m)$, and $x_{i}^{\prime}\left(t_{\lambda}\right)$ is either positive and decreasing, or negative and increasing in $\left(t_{\lambda}, t_{\lambda}^{*}\right)$. Thus for $t_{\lambda} \leq t \leq t_{\lambda}^{*}$, we have,

$$
\begin{equation*}
0 \leq\left|x_{i}(t)\right| \leq\left|x_{i}^{\prime}\left(t_{\lambda}\right)\right| \cdot\left|t-t_{\lambda}\right|,(i=1,2, \cdots, m) \tag{1.6}
\end{equation*}
$$

Making use of (1.5), (1.6) we get,
$\left(\left|x_{1}^{\prime}\left(t_{\lambda}\right)\right|+\cdots+\left|x_{m}^{\prime}\left(t_{\lambda}\right)\right|\right) \leq\left(\left|x_{1}^{\prime}\left(t_{\lambda}\right)\right|+\cdots+\left|x_{m}^{\prime}\left(t_{\lambda}\right)\right|\right) \int_{i_{\lambda}}^{t \lambda^{*}} t m \max _{i, i}\left[a_{i j}(t)\right] d t$
Thus,

$$
\begin{equation*}
1 \leq \int_{t_{\lambda}}^{t_{\lambda}^{*}} t m \max _{i, i}\left[a_{i j}(t)\right] d t \tag{1.8}
\end{equation*}
$$

This is impossible as $t \rightarrow \infty$, since $\left|x^{\prime}\left(t_{\lambda}\right)\right|$, for $(i=1,2, \cdots, m)$, remains bounded as $t \rightarrow \infty$, and by (iv) we have,

$$
\begin{equation*}
\int_{t_{\lambda}}^{\infty} t \max _{i, i}\left[a_{i j}(t)\right] d t \rightarrow 0, \quad \text { as } \quad t \rightarrow \infty \tag{1.9}
\end{equation*}
$$

So $F_{\theta}<\infty$, and (1.1) has a solution $x(t)$ which is non-oscillatory.

References

1. P. Hartman, The existence of large or small solutions of linear defferential equations, Duke Math. J. 38(1961) 421
2. A. Wintner, A comparison theorem for Sturmian oscillation numbers of linear systems of second order, Duke Math. J., 25 (1958) 515

[^0]: *Received June 8, 1964.

