181

—NOTES—

ON OSCILLATION NUMBERS OF SECOND ORDER LINEAR
DIFFERENTIAL SYSTEMS*

By JOHN JONES, JR. (The George Washington University)

1. The purpose of this paper is to obtain sufficient conditions for the existence of a
non-oscillatory solution z(t) of

z' + F(H)xz = 0, (1.1)

wherez = (z,, 2., -, T,), and F = F(¢) is an m by m matrix which is a continuous
function of ¢. Since m may be replaced by 2m, there is no loss of generality in assuming
that the m® elements of F are real-valued. Thus, the m components of the vector z on
which F operates will be confined to the real field.

Consider only those solutions £ = z(t) of (1.1) which are different from z(f) = 0.
We use A. Wintner’s [2] definition of the oscillation number F, of (1.1) to be the least
value having the property that no solution vector z(f) £ 0 will become the zero vector
at more than F, points ¢t of 6, any t-interval of finite or infinite length and we will also
require that each component solution z;(f) be simultaneously positive or negative
between consecutive zeros on 6.

Let z-y denote the scalar product Y -, z,y; of the vectors z = (2, , 5, - -+ , Z,)
andy = (Y1, ¥%2, *** , Yn)-

2. Non-oscillatory solutions of (1.1). We have the following results.

TueoreM. Let the following conditions be satisfied:

(7) F(¢) is a real symmetric positive definite m by m matrix for ¢ > 0;
(¢7) F(t) is non-increasing, i.e., if t > s, then F(t) — F(s) is non-positive;

(#47) The determinant of F(f) tends to zero as ¢ tends to «;
(@) f t max [a())] dt < o, F(t) = (ai;), a; > 0.
[} 1,7 (¥}

Then (1.1) is non oscillatory.
P. Hartman [1] has shown that (z), (i2), (4¢) imply that (1.1) has a solution z(¢) for
which

Fyz-z + 22’ >0, as t— . (1.2)

This implies that for x(f) a solution of (1.1), z’(¢) remains bounded as { — «. Let
us assume that (1.1) has a solution z(¢) for which (1.2) holds, and has an oscillation
number F, which is unbounded. Let

{tlyt2yt3:“'1t)\yt)\+l)"'} (1°3)
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be successive zeros of x(tf) and let z/(f) > 0. Now z/(f) has a unique smallest zero t%
fortint, <t <ty .
Integrating (1.1) component-wise over (¢, , t%) we get

2% m
2 — )+ [ X a0 di =0, (1.4)
[2Y i,7=1
or,
2% m
20 = [ 3 a0 d (1.5)
[2% i,0=
Now z;(i) = 0, for ¢ = 1,2, --- , m), and z/(t,) is either positive and decreasing, or
negative and increasing in (i, , t%). Thus for ¢, < ¢t < t%¥ , we have,
0 < |lz.(t)] < i@t — tf, G =1,2,---,m). (1.6)

Making use of (1.5), (1.6) we get,
[3%4

()] + -+ + ) < (@] + - + i) [

2

Im max la:;(8)] dt 1.7
Thus,
1< f tm max [a:;(1)] di. (1.8)
tx 1,1

This is impossible as { — «, since |2’'(t,)], for (¢ = 1, 2, --- , m), remains bounded
ast — o, and by () we have,

ftmamwwhw,%tam. (1.9)
So Fy < , and (1.1) has a solution z(f) which is non-oscillatory.
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