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ON THE SAINT VENANT PROBLEM FOR A NONHOMOGENEOUS
ELASTIC MATERIAL*

BY
R. D. SCHILE anxp R. L. SIERAKOWSKI
United Aircraft Corporation, East Hartford, Connecticut

Summary. The problem considered is the deformation of a cylindrical or prismatical
bar, loaded by forces and moments applied at the ends, in which the elastic “constants”
are arbitrary functions of two variables. The solution is formulated in terms of the six
Beltrami stress functions and it is shown that two of these are sufficient to satisfy
both compatibility and the boundary conditions.

When the variation of the elastic functions is uniformly small, and iterative method
may be applied which yields the homogeneous elastic solution as a first approximation.

1. Introduction. In recent years there have appeared in the literature a small
but steadily increasing number of papers concerned with the elasticity and plasticity
of nonhomogeneous materials. Most of the problems considered have involved certain
similifying assumptions of which may be mentioned the following:

One of the elastic functions, usually » (Poisson’s ratio) is assumed to be constant.
A particular type of inhomogeneity is assumed in order to simplify the equations.
Assumption of plane stress, plane strain or symmetry is made.

Assumptions regarding the vanishing of certain stresses are made and the elastic
functions required to ensure compatibility are then determined.

ISR

For problems in which the boundary conditions are given in terms of the stresses, a
general three-dimensional stress function theory has not been formulated.

The initial phases of the attack on the Saint Venant problem have already appeared
in the literature. The torsion problem [1] has been formulated in terms of a single stress
function assuming that both the shear modulus and Poisson’s ratio are arbitrary func-
tions of two variables. The shear modulus, however, is the only function influencing
the determination of the stresses. The problem of bending of a prismatical bar [2] has
been considered but restricted to the case » = constant. The stresses are again given
in terms of a single stress function and the governing differential equation is of the same
form as for the torsion function. For variable » it is apparent that the usual assumption
that the transverse normal stresses vanish is invalid and the complete solution of this
problem must therefore be based on a completely three-dimensional analysis.

The usual approach to three-dimensional problems in ordinary elasticity in which
the surface tractions are specified is to write the stresses in terms of either the three
Maxwell or the three Morera stress functions. The success of this method depends on
the fact that the six compatibility equations, when written in terms of the stress functions,
are reducible to three equations, subject only to the omission of certain additive func-
tions [3], which do not affect the stresses. For a nonhomogeneous material, this reduction
does not appear to be possible and one is forced to use the six Beltrami (Maxwell-Morera)
functions.

*Received April 20, 1964.



20 R. D. SCHILE AND R. L. SIERAKOWSKI [Vol. XXIII, No. 1

2. Three-dimensional stress functions. The compatibility equations in terms of
the stresses for an isotropic, nonhomogeneous body are
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where g(z, y, 2) = [G(z, ¥, 2)]", v = v(x, ¥, 2), § = o, + o, + o, . Two more equations
of the form (1a) and two of the form (1b) are obtained by cyclic permutation of the
variables z, y, z. By adding together all three equations of the type (1a), we obtain
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The equilibrium equations are identically satisfied if the stresses are written in
terms of the six Beltrami functions:

g; = Bu + Cuv - 2var Tzy = —C:ﬂ + (Lz + My - N:)u
gy = sz + Azt - 2I‘Ix:y Tzz = _Bzz + (N; + Lz - Mu)v’ (3)
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The subscripts on 4, B, C, L, M, N denote partial derivatives. Substitution of Eq. (3)
into the compatibility equations yields six equations in the six unknown stress functions.
The resulting equations will not be written out as they are very lengthy. It is clear,
however, that the presence of the terms involving derivatives of g precludes the possibility
of reducing this set of equations to a set of three equations in three unknowns, as is
done in the classical case.

One may logically attempt such a reduction in the case ¢ = constant, v = »(z, y, 2).
Taking L = M = N = 0, we find
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For the problem at hand, it will be more convenient to take the compatibility equa-
tions in the form
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Two additional equations of the form (5a) and two of the form (5b) are obtained by
cyclic permutation of the variables z, y, 2.

3. The Saint Venant problem. Consider the problem of a cylindrical bar, loaded
by forces and moments applied at the ends, in which G = G(y, 2), v = »(y, 2), the vari-
ables y, z being the coordinates in the plane of the cross section. The cylindrical boundary
is to be free of tractions. We shall tentatively assume that the stress functions of Eq. (3)
may be expanded into power series in x and we shall retain only the first two terms.

A=Ay, 2 + 24,2,

.......................

N°(y,2) + aN'(y, 2), (6)
0 = 6°(y,2) + 20y, 2),
0. = 03(y,2) + z0l(y, 2).

We substitute Egs. (3) and (6) into Eqgs. (5a) and (5b) and equate the coefficients
of like powers of z.

Consider first the terms linear in x. The first, third and fourth of the compatibility
equations yield
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where the §’s are constants, E is Young’s modulus and V} = 8°/9y* + 9°/92°. From
the second compatibility equation we have, making use of Eq. (7),
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where ¢’ = N, — M/, and v is a constant.
A similar accounting of the terms independent of x produces the following equations:
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where a, , @, , a; are constants,
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In view of the fact that o, is found directly, there is no need for all three stress functions
B, C, L and we may take B = L = 0, deleting these terms from Eq. (12).

The boundary conditions must be such that the cylindrical boundary is free of trac-
tions. In addition, at any section x = constant, the resultant axial load, two bending
moments, twisting moment and two shear forces are specified. Since the solution con-
tains 6 contants «; -+ B; it would seem that the constant y appearing in Eq. (9) is
not needed and we shall assume v = 0. The solution may then be further specialized
by taking 3/’ = N’ = ¢’ = 0. Equations (7) through (12) then appear in the simplified
form

o, = B[y + B12) + (a2 + B2)y + (e + Bax)2] + vWid, (13a)
9’ 9’ 9’ 2 2
—a? (gAyv) + g (gAu) + 2 ay az (gAlll) - vl(gVVIA)

= Vf[z’((al + Bir) + (o + Bo®)y + (a3 + Bs2)2)], (13b)

d a 0 9 0 = _.a_.
3 [a_y (980) + 3, (g¢z)] = 5, 2B + By + B2)]

__‘i ,_2,__8_ /_...‘?L[fl] )
9z [g(Au VVIA )] ay (gsz 3y 0z g (2% dy (13(,)

Note that the separate equations for ¢2 , ¢ and A° A’ have been incorporated into
single equations. The remaining stresses are determined from the relations
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It will be of interest to examine several special cases of this solution.

(a) The case v = constant. The right-hand side of Eq. (13b) vanishes and we may
then take A° = A’ = 0. The remaining equation for the stress function ¢° may then
be integrated with respect to y.

9 o d o J ,
G_y— (g9¢,) + 92 (99:) = 2vBxy + (&) — :3_2 I:g fL(Bl + By + Bx) dy],

where f(z) is an arbitrary function. The stresses are completely determined by this
equation, the solution being

0 = E[(O‘l + le) + (0‘2 + Bza«)y + (113 + ,B;,Q’)Z],

o, =0, =Ty EO:

ro= G+ 82) [Bay— 6. [ B ay — ¢,

0

Taz = @y
This solution coincides esssentially with that given by Schile [2].
(b) Pure torsion. Let us suppose that A = 0and o; = --- = 8; = 0 then Eqgs. (13a)

and (13b) are satisfied and (13¢) becomes

a 0 d 0y _
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The stresses are
To = —0%, Tee =6y, o.=0,=0,=71,=0.
(¢) Simple tension. If we take 8, = 8, = B; = 0 in Eqgs. (13a)-(13¢), we obtain
0y = Elay + auy + az] +vV3i4°,  ol=0, A’'=0,
Py
dy 0z
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If f(z2) = 0, then ¢’ = 0 and the shearing stresses r,, , 7., are both zero. It can be seen
that we require a non-trivial solution for A° and therefore the stresses ¢, , o, , 7,. do
not vanish. These stresses exist because of the lateral constraint introduced by the
varying » and they vanish when » is a constant.

(d) Pure bending. This case is exactly the same as for simple tension. The three
constants «, , @, , a3 are determined from the relations

fanS=0, fyaZdS=M, f202d8=0,
S S S

while for simple tension, these conditions are given in the form
fazdS=T, fya:dS=0, fzazd5=o.
S S S

The same remarks concerning the lateral constraint stresses apply here also.

It should be pointed out that in pure bending, «, is not necessarily zero and in simple
tension, @, , a; are not necessarily zero so that tension and pure bending are, in general,
coupled. Similarly, bending by a transverse load is coupled with both tension and torsion.

(e) Plane stress—Bar of narrow section. If we require o, , 7,, , 7,, to vanish, A and
¢° must be identically zero. The constant 8, is not necessary and we may set this equal
to zero also. Equations (13a)-(13d) are then reduced to

0. = El(a; + 817) + (22 + Bo2)y],
g, =0,

Tey = — f E@B, + B.y) dy + const,

sz[:z”((al + B:12) + (o + B2)y)] = 0,
where £ = E(y), v = »(y).

The last of the above relations constitutes an incompatibility which is satisfied
only when »(y) is appropriately restricted. This, of course, agrees with the well-known
fact that the plane stress state in the classical theory (g, » constant) does not satisfy
the compatibility equations exactly. If we ignore the equation involving », the stresses
given above agree exactly with the known solution for a thin bar with an end load [4].
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The above incompatibility may be obtained in a more recognizable form if we
consider a different interpretation of the solution given by Eqgs. (13a2)-(13d). Let ¥, 2
be the coordinates in the plane of a thin plate and = be the coordinate normal to the
plate. As before, ¢ = ¢(y, 2), v = »(y, 2). We now attempt to specialize Egs. (13) in
order to obtain a state of plane stress, o, = 7., = 7., = 0. Let all six constants a, , --- 83
vanish. Also, let A’ = 0. Then ¢/, = 0 and we may take a particular solution of Eq.
(13c) as ¢° = 0. Remaining are

240 [} o 0
Oz = ”v A = Aur = Avuv Tyz = _Aysy

62

The normal stress o, does not vamsh unless A° is harmonic, which is the same incompati-
bility that arises in the classic case. The identical result may also be obtained from
Eqgs. (7) through (12) by the following substitutions:

a = +=8=0, AOEA'EO' M°=N=0
B=C=L=0, ¢ =N —M=0(—2N =y, —2M = y)).

The same relations are obtained except with A° replaced by ¢’.

4, Solution of the equations. Equations (13b) and (13c) constitute a set of two
partial differential equations with variable coeflicients. If g and v are arbitrary functions,
it is impossible to establish any general results concerning the character of the solutions.

When g and v are constants these equations are reduced respectively to the biharmonic
equation and the membrane equation. Since the solutions of these equations are known,
it is logical to attempt to reduce the nonhomogeneous case to a succession of homogeneous
elasticity problems. The perturbation procedure used to accomplish this end is well-
known and has been used extensively to obtain approximate solutions of problems
in other areas. We assume

G = Go(l + e)\(y, Z)), v = ”0(1 + fﬂ(yr Z)), (14)

where A(y, 2), u(y, 2) are arbitrary functions; Go, », are constants and e is a small param-
eter. Substituting Eq. (14) into Eqs (13b) and (13c), we obtain
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Since the stress function A determines only the constraint stresses and since these
stresses vanish when ¢ = 0, we may assume that A = O(e). Then

=9 + &’ + 0(),
A=A+ A’z = «(Q° + Qz) + 0. (16)
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Using Egs. (15) and (16), we find

d
'@ Vflpo = - a_z 0'10 + 27’00063, (173)

9 20 _ 0 _ - 27
ay Vix = [ () Ll (>\¢ )] (1 = ») V12,

3 9’
+ 2v,G, & [u(B: + By + Bs2)] + dy 9z [A f o) dy:l, (17b)
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where
ol’ = Eo(B + By + 852,
= 2Gwo(\ + 1) + 2GN (B + By + B2) + # Vi,
E, = 2G,(1 + »y).

Terms involving higher powers of e may be retained if desired, but the essential features
of the solution are given by the initial terms. It is apparent that, in addition to the
assumption that e is small, we must also require that the quantities x° and @ be every-
where small. The derivatives of A and x must therefore not be too large throughout the
considered region.

5. Concluding remarks. We have shown that the state of stress in a bar with planar
inhomogeneity has a three-dimensional character, even in the state of simple tension.
The constraint stresses exist because of the variable Poisson contraction and disappear
when » is a constant.

The use of the Beltrami functions offers a general approach to the solution of problems
in three-dimensional nonhomogeneous elasticity. It would seem that, in the case » =
constant, a reduction in the number of stress functions from six to three should be
possible, similar to that derived herein for the case G = constant. This expectation has,
however, not yet been proven.

REFERENCES

1. J. F. Ely and O. C. Zienkiewicz, Int’l. JI. Mech. Sci. 1 (1960) 356
2. R. D. Schile, Int'l. JI. Mech. Sci. 5 (1963) 439

3. H. L. Langhaar and M. Stippes, JI. Franklin Inst. 258 (1954) 371
4. R. D. Schile, J1. Appl. Mech. 29 (1962) 582



