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—NOTES—

A UNIQUENESS THEOREM FOR THE DISPLACEMENT BOUNDARY-VALUE
PROBLEM OF LINEAR ELASTODYNAMICS*

By M. E. GURTIN (Brown University) AND R. A. TOUPIN (IBM T. J. Watson Research Center)

1. Introduction. The displacement equations of motion in the linear theory of
homogeneous elastic solids, with reference to rectangular Cartesian coordinates and
in the usual indicial notation**, are

CiikiUk.n + fi = pu,'2), (1.1)
where

Cijkl = Cjikl = Cklii • (1-2)

The w,-(x, i) and /i(x, I) are the Cartesian components of the displacement vector u(x, t)
and the body force f (x, t); x is a point of the closed region of space R occupied by the
body, and t represents the time. The cim are the components of the constant elasticity
tensor c and p denotes the constant mass density.

This note is concerned exclusively with the displacement boundary-value problem
of elastodynamics. We therefore adjoin the boundary condition

u(x, t) = u*(x, t), (x, t) t B X [0, °°), (1.3)

as well as the initial conditions

u(x, 0) = u°(x), uU)(x, 0) = v°(x), xtR. (1.4)

Here B X [0, °°) is the Cartesian product of the boundary B of R and the time interval
[0, °°), and u*, u°, and v° are, respectively, the prescribed surface displacement, initial
displacement, and initial velocity. We assume that u*, u°, v°, p > 0, and ciiki satisfying
(1.2) are given. The displacement problem under consideration then consists in finding
a twice continuously differentiable vector field u on R X [0, <») which satsifies (1.1),
(1.3), and (1.4).

The classical uniqueness theorem of Neumann [1] for the displacement problem
rests on the assumption that the elasticity tensor is positive semi-definite, i.e., that

Ciikieuekl > 0 (1.5)

for every tensorf en . If the material is isotropic^ (1.5) is equivalent to the inequalities

M > 0, -1 < o- < \ (1.6)
*Received March 25, 1964.
**Subscripts range over the integers (1, 2, 3), summation over repeated subscripts is implied, and sub-

scripts preceded by a comma indicate differentiation with respect to the corresponding space coordinate.
Superscripts denote time differentiation. Letters in boldface designate tensors.

fin view of (1.2) we need not require e to be symmetric.
ti.e.,

Cnki = I*[8,k8ji + Sn Sik + 2u(l — 2a)'' 5,y 5jtj],

where 5;,- is the Kronecker delta.
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provided n and a denote the shear modulus and Poisson's ratio of the material. Gurtin
and Sternberg [2] have shown that for the isotropic case (1.6) may be relaxed without
loss of uniqueness. Specifically they show that (1.6) may be replaced by the less stringent
assumption

/J. > 0, — oo < o- < 1 < <r < oo . (1.7)

Our objective here is to extend this result to the anisotropic case. In particular,
we show that uniqueness of the displacement problem holds provided c is semi-strongly-
eliplic, i.e.,

CijkioiiOuPjfil > 0 (1.8)
for every pair of vectors a, [?• Under the assumption of isotropy (1.8) and (1.7) are
equivalent. Moreover, for the general anisotropic case (1.8) is weaker than (1.5) since
the latter condition implies the former, but not vice-versa.

Toupin and Bernstein [3] have shown that semi-strong-elipticity admits a simple
intrinsic interpretation: an elastic body propagates plane waves with real speeds if
and only if (1.8) holds.

2. The uniqueness theorem. In what follows we assume that R is a bounded regular
region of space, i.e., the boundary of R consists of a finite number of non-intersecting
closed regular surfaces, the latter term being used in the sense of Kellogg [4].

Uniqueness Theorem. There is at most one solution to the displacement problem
provided the elasticity tensor is semi-strongly elliptic.

Proof. In view of the linearity of (1.1), (1.3), and (1.4) it is sufficient to show that
f = u* = u° = v° = 0 implies u = 0. Assume that the former holds. Recall the power
identity

f ciitlul,ln,u<i'\x, t) dx + [ fiuY\x, t) dx = U(1\t) + Kw(t) (0 < t < oo), (2.1)*
J B JR

U(t) = 2 JR cukiui.iuk,i{x, t) dx, (2.2)

K(t) = pu^W)(x,t)dx, (2.3)

which may be verified using (1.1), (1.2), and the divergence theorem. This identity,
together with f = u* = 0 and the boundary condition (2.3), implies that C7(1>(<) =
Ka)(t) = 0 (0 < t < oo). Next, since u° = v° = 0, the initial condition (2.4) yields
U(0) = K(0) = 0. Hence

XJ(t) + K(t) = 0 (0 < t < <»). (2.4)
Suppose we could show that

U(t) >0 (0 < t < oo). (2.5)

It would then follow from (2.4) that K(t) = 0 (0 < t < °o) which, because of (2.3),
would imply that u(1) = 0 and hence that u(x, t) = u(x, 0) = 0 for every (x, t) e R X [0, oo).
The proof therefore reduces to showing that the inequality (2.5) holds.

We establish (2.5) using a method due entirely to van Hove [5]. Extend the defini-

*We use dx to denote integration with respect to x in both surface and volume integrals.
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tion of u to E X [0, °=), where E is the entire three-dimensional Euclidean space, by
setting

u = 0 on [E — R] X [0, °o) (2.6)

Then, by virtue of the assumed smoothness of u, it follows that, for each t > 0, w;(x, t)
and Wi.,(x, t) are both absolutely and square integrable over E with respect to x. Hence
uk and uk.i possess, respectively, the three-dimensional Fourier transforms rjk and
tjkt defined by

Vk

Vki

(x, t) = (1/2tt)3/2 f e'""Ul(y, t) dy, (2.7)
J E

(x, t) = (1/2tt)3/2 [ y, t) dy. (2.8)
Je

Consequently, by (2.7), (2.8), the divergence theorem, and the fact that u = 0 on
B X [0, °°), it follows that

rjkl(x, t) = —ixtriiix, t). (2.9)

Next, a fundamental theorem of Fourier analysis (cf., e.g., Goldberg [5], Theorem 13E)
yields

I t) dx = / VnvAx, t) dx, (2.10)
J E ^ E

where the superscript c denotes the complex conjugate. The functions i)k are, in general,
complex valued. Their real and imaginary parts will be denoted by t]'k and t\k

Vk = Vk + Wk ■ (2-11)

Then (2.6), (2.9), (2.10), and (2.11) imply

[ W;.,(x, t)uk,,(x, t) dx = [ [x,xilvi(x, t)Vk(x, 0 + vV(x, t)v'k'(x, <)}] dx. (2.12)
Jr Je

Now multiply (2.12) by ciiki and use (1.8) to verify (2.5). This completes the proof.
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