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A MATRIX EQUATION RELATED TO A NON-OSCILLATION CRITERION
AND LIAPUNOV STABILITY

By WILLIAM T. REID (State University of Iowa)

1. Introduction. In this note it is shown that recent work of the author on Riccati
matrix differential equations and non-oscillation criteria for associated linear differential
systems, [6; §7, in particular], implies a result on the solution of an algebraic matrix
equation that is intimately related to the existence of a Liapunov function for linear
differential systems with constant coefficients (see, for example, Hahn [2; §8], Bellman
[1; Ch. 13], or LaSalle and Lefschetz [4; §17]).

Matrix notation is used throughout; in particular, matrices of one column are termed
vectors. The symbol En is used for the n X n identity matrix, while 0 is used indiscrim-
inately for the zero matrix of any dimensions; the conjugate transpose of a matrix M
is denoted by M*. The notation M > N or N < N, {M > N or N < M}, is used to
signify that M and N are Hermitian matrices of the same dimensions and M — N
is non-negative, {positive}, definite.

The basic result of this paper is as follows.
Theorem A. If A and B are constant n X n matrices with B Hermitian and B > 0,

while the n X n2 matrix

\\B AB A2B ■ ■ ■ An~lB\\ (1.1)

has rank n, then there exist Hermitian matrices W„ < 0 and W-» > 0 that are extreme
solutions of the matrix equation

WA + A*W + WBW = 0 (1.2)
in the sense that W = W„ and W = W-a are individually solutions of (1.2), while if W
is any Hermitian matrix satisfying (1.2) then W„ < W < 1F_„ . Moreover, > 0,
{Wa, < 0}, if and only if all proper values X of A, {—A}, have lie X <0.

The proof of Theorem A is presented in Sect. 2, and Sect. 3 contains a modification
of this result that holds when (1.1) has rank n — k, 0 < Ic < n. It is worth noting that
the condition that a matrix (1.1) have rank n has appeared in certain treatments of
optimal control problems. In particular, this condition is equivalent to the requirement
that the autonomous control problem

x(t) = Ax(t) + Bu(t) (1.3)

be proper in the sense of LaSalle [5; §4], or is completely controllable in the terminology
of Kalman, Ho and Narendra in [3].

2. Proof of Theorem A. By Theorem 7.2 of Reid [6], a linear vector differential
system

u' = Au + Bv, v' = Cu — A*v, (2.1)

with constant coefficient matrices satisfying

C* = C, B* = B > 0, (2.2)
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and which is identically normal, is non-oscillatory on (— <*>) if and only if there
is an Hermitian matrix W satisfying the algebraic matrix equation

WA + A*W + WBW - C = 0. (2.3)
Moreover, if such a system (2.1) is non-oscillatory on (—oo; oo) then there exist
Hermitian matrices W„ and W-a which are individually solutions of (2.3), and are
extreme solutions for the Riccati differential equation

W'(x) + W(x)A + A*W{x) + W{x)BW{x) - C = 0 (2.4)

in the sense that if W(x) is any Hermitian solution of (2.4) on (— <*>, co) then W„ <
W(x) < TF_„ ; in particular, if W is any Hermitian solution of (2.3) then < W < W-*.
Moreover, if (U0(x), V0(x)) is the solution of the corresponding matrix differential
system

U' = AU + BV, V' = CU — A*V, (2.5)
satisfying ?7o(0) = 0, F„(0) = En , then U0(x) is non-singular for x ^ 0 and Wa(x) =
V0(x)U~0l{x) is such that W0(.x) —> Wa , \W0(x) —> TF_„J, as x —* — oo, \x —> oo}.

By definition, a system (2.1) is identically normal if the only solution (u{x), v(x))
of this system with u(z) = 0 on a non-degenerate interval is the identically vanishing
solution u(x) = 0, v(x) = 0. This condition is clearly equivalent to the condition that
the fundamental matrix Z(x) = exp {—xA*} of z' = —A*z is such that for any constant
vector | the vector function BZ(x)% is identically zero on a nondegenerate interval
only if | = 0, and in view of the Cayley-Hamilton theorem one has the following result.

Lemma 1. A system (2.1) with constant coefficient matrices satisfying (2.2) is identically
normal if and only if the matrix (1 A) is of rank n.

Note that if y is a proper vector of A* corresponding to a proper value X, and Bij = 0,
then BA*'r) = 0, (j = 1, 2, • • •), so that the following result is immediate.

Lemma 2. If A and B are constant n X n matrices with B > 0, the matrix (1.1)
is of rank n, and j? is a proper vector of A*, then ri*Bt] > 0.

Now consider a system (2.1) for which condition (2.2) holds and also C > 0. Such
a system is non-oscillatory on (— oo, oo) • that is, if (u(x), v(x)) is a solution with u(xj) =
0 = u(x2), (x1 < x2), then u(x) = 0 on [xi , x2]. This result, which is a special case of
Theorem 5.2 of Reid [6], is a direct consequence of the observation that if (u(x), v(x))
is such a solution then

0 = v*(x)u(x) = f [v*(x)Bv(x) + u*(x)Cu(x)] dx;
x l

hence Cu(x) = 0 and Bv(x) = 0 throughout [a^ , x2], so that u' — Au and u(x) = 0
as u(xJ = 0.

In particular, consider a system

u' = Au + Bv, v' = — A*v, (2.10)

where A and B are n X n matrices with B* = B > 0; that is, a system (2.1) satisfying
(2.2) and with C = 0. In view of the above result and Lemma 1, it follows that under
the hypotheses of Theorem A the system (2.10) is identically normal and non-oscillatory
on (— , «>), and thus by Theorem 7.2 of Reid [6] there exist Hermitian matrices W„, W- oo
which are individually solutions of (1.2), and such that if W is any Hermitian solution
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of this matrix equation then Wa < W < JF_„ ; in particular, W — 0 is an Hermitian
solution of (1.2) so that Wa < 0 < 1F_„ . Finally, for C = 0 the solution (U0{x), F0(a;))
of (2.5) satisfying U0(0) = 0, F 0(0) = En is

V0(x) = U0(x) = F?_1(x) [ V*o(s)BVo(s) ds, (2.6)
Jo

so that for i^O,

W0(x) = Vo(x)Uo\x) = V0(x)

and hence for x ^ 0,

W0(x) =

£ V*0(s)BV0(s) ds] V?(i),

£ Vr1(x)V*o(s)BVo(s)Vo\x) ds] l,

£ et.-. &] 1 = £ e,ABe'A'dtj \

In particular, W0(x0 > W0(x2) > 0 for 0 < x^ < x2 , and = limI_„ W0(x) is
positive definite if and only if

lim 17*
[/"_ Jo

e'ABe'A' dt

is finite for arbitrary constant vectors ?/. Now for -q a proper vector of A * corresponding
to a proper value X = a + 0 we have

v* [X e'ABe'A' dt v = (jfBrj) [
_Jo J Jo

e dt,

and consequently if TF_ro is positive definite then all proper values X of A * have Re X < 0;
as X0 is a proper value of A* if and only if X0 is a proper value of A, this condition is
equivalent to Re X < 0 for all proper values X of A. Conversely, if Re X < 0 for all
proper values X of A, then

f e'ABe'A' dt = lim f e'ABe'A' dt
J 0 x->co J 0

is a positive definite matrix, and TF_„ , the inverse of this matrix, is positive definite.
The conclusion that TF„ < 0 if and only if all proper values X of — A have Re X < 0
follows by a similar argument.

Clearly W is a positive definite solution of (1.2) if and only if 0 = IF-1 is a positive
definite solution of

Ati + tiA* = -B. (2.7)
For A and B real matrices, and B positive definite, (2.7) is a well-known matrix equation
occurring in the determination of a Liapunov function for a linear vector differential
equation with constant coefficients, (see, for example, Hahn [2; §8], Bellman [1; Ch. 13],
or LaSalle and Lefschetz [4; §17]).

3. An extension of Theorem A. If the matrix (1.1) is not of rank n then the system
(2.1) is not identically normal, and the result of Theorem A is modified. Now for non-
oscillatory systems that are not identically normal the author [7] has recently discussed



86 WILLIAM T. REID [Vol. XXIII, No. 1

the existence of principal solutions and related distinguished solutions of associated
Riccati equations, and the results of that paper might be used to obtain a generalization
of Theorem A. For the case of the above systems with constant coefficients, however,
this may be done directly as follows.

Theorem B. Suppose that A and B are constant n X n matrices with B Hermitian
and B > 0, while the matrix (1.1) has rank n — lc, 0 < k < n. If A is an n X k matrix
of rank k such that

0 = A*B = A*AiB, (j = 1, 2, ••• ,n - 1), (3.1)

and Q is an n X (n — lc) matrix such that A*Q = 0, Q*Q = En=k , and a = Q*AQ>
® = Q*BQ, then there exist (n — k) X (n — k) Hermitian matrices < 0, > 0
which are extreme solutions of the matrix equation

■wa + + wffi-w = o (3.2)

in the sense that W = Wo and W = CW_„ are individually solutions of (3.2), and if V?
is any Hermitian matrix satisfying (3.2) then "W. < W < ; moreover, W_,» > 0,
{Woo < 0}, if and only if all proper values A of ft, {— a}, have Re A < 0.

Without loss of generality it may be supposed that the matrix A satisfying (3.1)
is normalized so that A*A = Ek ; in this case, En = QQ* + AA*, so that ffiffi* =
Q*B[QQ*]A *Q = Q*B[QQ* + AA*J/1 *Q = Q*BA*Q, and by induction it follows that
($>&*' = Q*BA*'Q, (j=l, 2, • • •)• If j? is a vector such that 0 = ®^ = ®®*'^, (;= 1, 2, • • •),
then ^ = Qr) is such that 0 = Q*B% = Q*BA*'£, (j = 1, 2, • • •), and as A*B = 0 it
follows that 0 = B£ = BA*'£, (j = 1, 2, • • ■). Since A*J = A*Qr] = 0, it then follows
that | = 0, and hence y = = 0. That is, the set of column vectors of ®, ($>&*',
(j = 1, 2, •••)> contains n — k linearly independent vectors, so that by the Cay ley-
Hamilton theorem the (n — k) X (n — k)2 matrix

||® a® a2® • • • a"-*-1® 11 (3.3)

has rank n — k, and consequently the result of Theorem B is an immediate corollary
to Theorem A.

The basic properties that relate the conclusion of Theorem B to the general results
of Reid [7] are as follows:

(i) if (UQ{x), V<s(x)) is the solution of (2.10) defined by (2.6), then under the hypo-
theses of Theorem B the n X n matrix

K(x) = f F°S(s — Xo)BVo(s — Xo) ds, x ^ 0,
Jo

is an Hermitian matrix of rank n — k and K(x) A = 0, where A if an n X k matrix of
rank k satisfying (3.1);

(ii) if if is an Hermitian n X n matrix of rank n — k, 0 < lc < n, A is an n X k
matrix such that KA = 0, A*A = Ek, and Q is an n X (n — k) matrix such that A *Q — 0,
Q*Q = En-k , then the E. H. Moore general reciprocal K* of K, (see, for example,
Reid [7; §6]), is given by K* = Q[Q*KQr'Q*.
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CONDITIONS FOR THE CAUSALITY OF NONLINEAR OPERATORS DEFINED
ON A FUNCTION SPACE*

By I. W. SANDBERG (Bell Telephone Laboratories, Inc., Murray Hill, New Jersey)

Abstract. This note considers nonlinear operators T with both range and domain
subsets of the space of complex n-vector-valued functions of the real variable t for
— co <t< oo. Conditions, in which energy-type quantities play a key role, are presented
under which T is causal in the following sense:

Let 33(T) denote the domain of T and let t0 = sup {<' | for all / t D(T), jit) = 0
for almost all t < t'}. Then T is causal if for an arbitrary 8 > t„, Tj = Tg a.e. on (t0, 5)
whenever f and g belong to SD(7') and / = g a.e. on (t0 , S).

1. Notation. Let 3C„ denote the space of complex measurable n-vector-valued
functions of the real variable t for — oo < t < co. The complex-conjugate transpose
of an arbitrary / e 3C„ is written as /*. With g and h arbitrary elements of 3C„ , and x
either an arbitrary real number or let (g, h; x) denote

£
g*h dt,

and let

I!9) z|| = ((g, 9) x)Yn-
The symbol (R denotes the set of real-valued functions and

£2n = {/ | / e 3C„ , </, /; c°> < }.

If / e 3Cn , and x < <*>, then fx is defined by

fx = /, t < x

/x = 0, t > x.

2. Introduction. The external properties of a physical system can frequently be
characterized by an operator relation of the form

  9 = Tj,
*Received February 26, 1964; revised manuscript received July 2, 1964.


