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Abstract. This paper demonstrates that an old but very powerful and very general
mathematical technique, the perturbation method, may be used to investigate such
a modern application as parametric amplification. All possible pumping frequencies
are predicted without recourse to any specialized procedures.

Introduction. One of the most powerful mathematical techniques for solving
nonlinear differential equations, or linear differential equations with time varying
coefficients is the perturbation method as introduced by Poincar<§ [1] and modified
by Lindstedt [2]. In spite of this well known fact it is not used as often as it might be
because often some less general but less lengthy means of solution [3] is available. If
only the first order approximation is required, the method of Kryloff and Bogoliuboff
may be used. If higher order approximations are required the KB method as generalized
by Bogoliuboff and Mitropolsky [5] is useful. An excellent discussion of all methods
can be found in the recent book of Minorsky [6]. It is often more difficult for the unini-
tiated in a particular field to learn and apply a specialized technique then it is for him
to utilize an old familiar procedure. In the hope of making the perturbation method
an even more familiar procedure, we apply it to the problem of parametric amplification.

The parametric amplifier makes use of a nonlinear reactive element to achieve
amplification; the name arises, because during operation, a parameter of the circuit
is made to vary with time. The recent interest in this type of amplifier is due to its
noise-free operation and its ability to function at the higher radio frequencies. Thus,
today the reactive element is often a nonlinear (per se) capacitor. In the earlier electrical
experiments, at low frequencies, the varying parameter was either a capacitor or an
inductor whose value was changed by mechanical means.

The degenerate case. As a review of the perturbation method, consider the so
called degenerate case represented by a single circuit as shown in Fig. 1, in which R
and C are constants but E and L are periodic functions of time. By Kirchhoff's second
law we have

j (Li) + Ri + | f idt = E. (1.1)
In Eq. (1) let

L = L0( 1 + K sin 2wt), L0 = const., 0 < K < 1,
R = Kr,
E = KA sin wt + KB cos ut.
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Fig. 1. The single circuit of the degenerate case.

Upon differentiating (1.1) we have the defining differential equation for the system,
namely

(17' rja (1 \
L0( 1 + K sin 2cot) -—5 + 4KcoL„ cos 2cot — + Kr — + ^ — 4w2L0K sin 2utji

= KAu cos cot — KBu sin wt. (1.2)

From (1.1) we note that the input signal is represented by

E = KA sin cot + KB cos cot = KI sin (cot + v). (1.3)

Thus the input is periodic and has an angular frequency u. Our problem is to find a
periodic solution to (1.2) having this same frequency. We propose to do this by means
of the perturbation method. For this purpose we assume that K is the perturbation
parameter and write:

i = i0 -f- Kii -\- K2i2 + • • ■ , co = oj0 -f- Kco, + K2w2 + • • • . (1-4)

For convenience, in (1.2), let cot = $. Equation (1.2) becomes

co2L0(l + K sin 2$) Jp + 4u2KL0 cos 2$ ~ + uKr + (^ ~ 4w2L0K sin 2$Ji

= KAu cos $ — KBco sin $. (1.5)

We now substitute (1.4) into (1.5) with the result

{ajo "I" 2Ko)0wi -f- K'(co2 -f- 2co0co2 ~t~ • • ■)}Tjq{\ -f- K sin 2$>)(i'o' -I- Ki['

+ K2i'2' + • ■ •) ~t~ 4{coo + 2Kw0co1 -f- K2(io2 + 2co0co2)},

KLU cos 2$(i'o + Ki[ -f- K2i2 4" • • •)

+ Kr(o>0 + Kco, + K2co2 ■ ■ -Wo + Ki[ + K2i2 + • • •)

+ ~ 4[o>o + 2Kco0co! + K2(col + 2co„co2) + • • •]

•L0K sin 2$|(io + Kix + K\ + • • ■)

= KA(ua + Kco, + KW ■ ■ •) cos $ - KB(u0 + Kco, + K2co2 + • • •) sin $ (1.6)

In (1.6), i' = di/d$, i" = d2i/d$2.
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Let us now gather the coefficients of each power of K and set them individually
equal to zero. The coefficient of K° gives us the equation

co^gi + i^Q. (1.7)

We note that since $ = wt, we want a periodic solution to Equation (1.7) with a period
of 2t. Thus our solution must be of the form

i0 = G sin $ + H cos $, (1.8)

and (1.7) will have this periodic solution provided

CO? = 1/CLo . (1.9)

This condition is imposed because we requested a solution having the same frequency
as the input signal.

The coefficient of K1 gives us the equation

i[' + 2} r iy = —(sin 2<i> + — i'0' — (4 cos 2$ -\ y-W
WoLio^ \ 030 \ 030La/

+ (4 sin 2$)»„ H—~~ cos $ y-sin $>. (1-10)
COqjL/q W01v0

We must substitute into (1.10), i0 and its derivatives as given by (1.8). This results
in the equation

+ t'i = — ̂ sin 2$ + 2 — j( — G sin $ — H cos $)

— ^4 cos 2$ -f cos ^ ~ H sin <J>)

H—~ cos $ ^-sin $ + 4 sin 2$(Gsin $ + H cos $). (1-11)
CO0-/-/0 0)qIjq

Upon carrying out the multiplications in (1.11) we find

d\ , . (2Gco, . rll B \ . (2Ho}1 rG , A )
dtf + ll I O)0 + o>0L0 WoLo) Sm \ coo co0L0 + co0L0) C°S

+ 5G sin 2$ sin $ — 5H sin 2$ cos $ — 4H cos 2$ cos $ + 4H cos 2$ sin $. (1.12)

Before we can integrate (1.12) we must replace the trigonometric product terms by
trigonometric sums. Thus,

sin 2$ sin $ = 2 sin2 $ cos $ = 2(cos $ — cos3 $)

= 2 cos $ — 2(3/4 cos $ + 1/4 cos 3$)

= 1/2 cos $ — 1/2 cos 3$. (1-13)
Likewise,

sin 2$ cos $ = 1/2 sin $ + 1/2 sin 3$,

cos 2$ cos $ = +1/2 cos $> + 1/2 cos 3$,

cos 2$ sin $ = —1/2 sin $+ 1/2 sin 3$.
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With these substitutions, (1.12) becomes

d\ , . /2ftoj , rH B , H\ .+ = V^ + ^L0-^L0 + -2)sm*

, (2HUl rG , A , G\ , , 9fl . 9G+ I   — —7- H + -r I cos $ + — sin 3$ r- cos 3$ (1.14)
\ co0 Wo-^o w0La 2/2 2

The terms in sin $ and cos $ on the right side of (1.14) will ruin the periodicity of ix .
Therefore, we must require these secular terms to have zero coefficients. This results
in the conditions

2Gui rH_ B_ H = Q
co0 cCqLq WuLa 2

2Hlo, _ rG ^4 _j_ ̂  _ q
COo CxJqLq COqLq 2

If Eqs. (1.15) are satisfied, (1.14) becomes

(1.15)

d . . 9H . 9G _ , ,^5 + ix = -y sin 3$ - -y cos 3$, (1.16)

and the periodic solution is

t'i = —~ H sin 3<b + G cos 3$. (1-17)16 16

Thus, to the first order in K our solution is
QK Q7T

i = G sin $ + H cos $ — — H sin 3$ + — G cos 3$16 16

9 K 9 K
= G sin ut + H cos wt ——r H sin 3cot + —— G cos Scot,16 16

(1.18)

where G and H are related to the coefficients of the system by (1.9) and (1.15). To
obtain a unique solution when Eqs. (1.15) are solved for G and II, the determinant
of the coefficients must be different from zero:

4fe)'+33 -\ * °- <119»
To realize some of the significance of this result consider the following special cases.

Case I.
1. The system operates at a constant frequency w = co0, so that wj = 0.
2. The input is KA sin ut, i.e. 5 = 0.

Equations (1.15) become:
r

\cO„L„ ^>)IJ[>

and our solution has the form

— 1/2 )G = —4—, H = 0. (1.20)

—— r sin cot + ^ 7     cos 3o>t. (1.21)
_ co0Lq\ 16

2 / i'-'f)
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Since K < 1, the coefficient of the third harmonic is less than re of the fundamental.
We might thus write

sin wt. (1-22)
t (coqLo/2)

Equation (1.22) represents the current output. The voltage output is given by

Ri = Kri = KrAr sin wt, (1.23)
03qLjor —  

2
but the voltage input is given by

E = KA sin ut. (1.24)
Thus, the voltage gain is

r ■ = KrA v 1 = l = 1 n
r - (co0L0/2) X KA 1 - (co„L0/2r) 1 - (Koo0L0/2R) [ )

Letting Q = u0L0/R Equation (1.25) becomes:

Gam = 1 - {KQ/2) ^L26)

Thus, for Case I, the system is an amplifier provided KQ/2 < 1.

Case II.
1. The input is KA sin ut, i.e. B = 0.
2. The system's frequency may vary from co0 by an amount of Aw.

We note from Eq. (1.4) that to the first power in K

CO = C00 "t" Kooi = C00 + AcO,

so that

Aco
co0

= zW.
\co0/

Letting a — coj/coo and /3 = KQ/2 we can rewrite Equations (1.15) as

2aG + + | = 0,
0)qJjq 0)qjL/ o A

(1.27)

(1.28)
0~,U | 4- —   A
2aH ~ co0L0 + co0L0 + 2 - °-

Since u0L0/R = u0L0/Kr = Q and B = 0, Eqs. (1.28) become

2aG + ~Eq + f = 0 or 2aG + § + f = °'

O TJ JLiA-a-G-h o n 0. jl U/R)K ,G_n n on,
KQ RQ 2 °r 2/3 2/3 2 ^ ^
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Solving the first of Equations (1.29) for II, we find

TJ —4ocG —4afiG , „ .
1 + (1//3) ~ 1 + /3- (1'30)

Substituting this value of // into the second Eq. (1.29), we have

AL
2/3

-8a (3 _ J_ i
.1+/3 2/3 ' 2

Solution of this equation for G, yields

G + = 0. (1.31)

g(A/fl)(l + /3)
1 - /32 + 16a2/32 ( d ^

Substituting this value of (? into Equation (1.30), we obtain

Thus,

-4a/3g(^/g)
1 - /32 + 16a2/32 ( ^

,~2 , rr2\l/2 K(A/R)[( 1 + /3)2 + lG^T'2
«?+#) = 1 _ f + , (1.34)

and the gain is given by the expression

_ [(i + A2 + myr2 n
Gain - 1 — /32 + 16a2/32 ' (L35)

The non-degenerate case. Pumping frequencies. A common form of the parametric
amplifier is shown in Fig. 2. Its operation depends on the nonlinearity of the element

Fig. 2. The three circuits of the non-degenerate case.

common to all three circuits. In this case it is a nonlinear inductance. In other cases,
it might be a nonlinear capacitance. Having chosen a nonlinear inductance, we realize
that the nonlinearity is introduced by the B-H curve and that the shape of this curve
determines, therefore, the characteristics of the amplifier. If we choose an analytical
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representation for the B-H curve, the characteristics of the amplifier will be determined
by the parameters in this representation. Because of hysteresis, the B-H curve is actually
a loop as shown in Fig. 3. If, however, the two branches of this loop are fairly close

Fig. 3. The actual hysteresis loop of the system.

together, i.e., the hysteresis is small, we might proceed by considering a single average
curve as shown in Fig. 4. This curve is an odd function and may be represented analyt-

B

H

Fig. 4. The idealized B-H curve used to introduce nonlinearity into the system.

ically as
B = niH + \H\ H + M3H3 + \H\ H* + • • • , (2.1)

in which , n2 • • • are constants. The characteristics of the amplifier should, therefore,
be determined by these constants. In order to introduce the nonlinear inductance
directly into the differential equations of the system, we remember that:

L = U, H L > 0 (2.2)
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Where Ui is a constant whose value depends upon the units and configuration. Thus,

L = H1U1 + 2H.U, \H\ + 3MsU,H2 + 4^4t/x \H\H2 + •■■ , (2.3)

but

77 = UJ, (2.4)
where U2 is a constant depending on units and configuration and 7 is the current through
the nonlinear inductance. Substituting (2.4) into (2.3), we have

L = L0 + lx |7| + L2I2 + U |7| ? + • • • , (2.5)

where Lq ~ U \ , L\ ~ 2^2Ui"U% , 1^2 = \XJ % , 7/3 ~ \U % .
Thus,

L = L0[ 1 + 0(7)],

where

0(7) = ^ |7| + ^ 72 + y2 |7| r + • • • , (2.6)
ljQ IJQ ±JQ

The circuit of Fig. 2 consists of three loops and would, therefore, ordinarily be represented
by three equations. However, in operation the branches are so tuned that each current
remains essentially in its own branch and the sum of the three currents passes through
the common nonlinear element. Thus, the signal loop can be described by the single
equation

ft (LI) + Ri, +^fi.dt = E (2.7)
in which L = La[ 1 + 0(7)] is the nonlinear inductance, 7 the total current through
inductance {i, + ii + ip), i, the current in signal loop, i( the current in idle loop, iv the
current in pump loop, R the total resistance in signal loop, C the capacity in signal
loop, E the applied voltage, i.e. signal input voltage. Equation (2.7) can be differentiated
once more to give a differential equation of the form

7/0 ̂ 2 [(^'. + h + ip) + (i. + ii + 0(i. + i{ + zp)] + R ^ i, = (2.8)

For this equation to describe the current i, in the signal loop, the other currents, ii
and ip must be predetermined. This can be achieved by making iv = EJZV , where
7?„ is the voltage applied to the pump circuit and Zv is the impedance of the pump
circuit. If both of these quantities are known, iv is known. Upon drawing the idle circuit
as shown in Fig. 5, we note that the current i{ is determined by ENL/Z[ where ENL
is the potential across the nonlinear element and Z[ is the impedance of the resistance
and capacitance of the idle circuit. Z\ is known and ENL can be determined from

[7+ /!)(/)]

= L0 — [(i, + ii + iv) + (i. + ii + iB) 0(i. + ii + t,)]. (2.9)
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c

Fig. 5. The circuit used to determine the current in the idle loop.

Thus,

i, = Z[ 1L0 [(i, + ii + iv) + (i, + it + iv)Q(i, + it + i„)] (2-10)

Iiiv is known, Eqs. (2.8) and (2.10) are a pair of simultaneous differential equations
in i, and ii . Because of the tuning, we can write

i, = c. sin («.< + 0.), ii = c< sin (uj + 0,), ^ j

iv = cp sin (oipt + 0„) = sin (uvt + ©„),
V

where w, ^ ^ . Since i{ contains only the frequency , we are only interested
in those terms on the right side of Eq. (2.10) which produce terms in cof . If now we
assume a known relationship between the frequencies u, , co,- , wp , we can then solve
for in terms of i, which is unknown and ip which is known. Thus Eq. (2.10) can be
used to solve for i{ in terms of i,. Upon substitution of this value of i{, Eq. (2.8) becomes
an equation in a single unknown, i, . Writing Eq. (2.6) in the form

0(t, + ii + ip) = Dl |i, + ii + iv\ + D2(i, + i{ + iB)2

+ D3 |i, + ii + ivI (i> + it + ivf + *' * > (2.12)
where

  2jU2^1 U2   2/^2^2
Vl~ L0~ ~ Mi '

D2 = ^ =U = 3p, UrUl = Ml
Lo HiUi Mi '

T) _ Ln = 4/^4 U1 U\ _ 4:HiUl
3 Lo MiC/i Ml '

We resort to the following obvious mode of attack. We examine Eq. (2.12) term by term,
and for each term we determine whether or not there is a relationship between i, ,
i{, i„ such that the term in question will cause amplification when substituted in Eq.
(2.8). Consider once again Eq. (2.7). After differentiation by t this becomes



10 CARL A. LUDEKE [Vol. XXIII, No. 1

If we consider (2.12) term by term, the L used in (2.13) can be written as:
L„ = (1 - K |/n|), (2.14)

where n = 1, 2, • • • and K is the parameter which introduces the nonlinearity. The
minus sign is used because ordinarily L decreases as the current increases. Thus, (2.13)
has the form

+ + (2.15)

We wish to examine (2.15) by means of the perturbation method using K as the perturba-
tion parameter. To start from the free undamped oscillation we write

R = Kr, E = KE', (2.16)
so that (2.15) becomes

L0§(I-KHn)+Erft + i.K% (2.17)
To save subscripts, I = i, + i{ + iP is written as

I = i + /, where i = is , / = i{ + iv . (2.18)

We now assume a solution of the form

i = i0 + Kii -f- K2i2 + • • • , co = co0 + Ku i + K2co2 + • • • , (2.19)

and an input of the form

E = KA sin cat + KB cos ut, i.e. E' — A sin cot + B cos cot. (2.20)

With cot = $, Eq. (2.17) becomes

co2L0 (I - KI 17"|) + oiKr j| + ~rti = wKA cos $ - uKB sin $. (2.21)

Into (2.21) we substitute (2.19) to obtain

[«o + 2Kcoooi! + K2(ul + 2co0co2 + • • •)] L0 [/ + i0 + Kix + K2i2 + • • •

— K(j + i0 + Kii + K2i2 + • • -)l (/ + io + Kix + • • •)|~]

+ co0 + Kwl + K2cx>2 + • • •) Kr (i0 + Kii + K2i2 + • • •)

+ ^7 (io + Kii + K2i2 + • • •)

= (o?o ~t~ Koji -f- K2CO2 -f~ • • -)KA cos $ — (co0 + Koji -j- if2o>2 '' -)KBsin # (2.22)

Consider first the coefficient of which is

u'tL0 (/ + io) + q do) = 0

or

dtf + CL^l %a ~ dtf (2'23)
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Now

/ = ■»!+ iP = + ipM = K(»i, co,), (2.24)

where is the frequency of current in the idle circuit, coP the frequency of current
in the pump circuit, and d2j/d<p' = co~ ~2d2j/dt2 = function of coj and oip . The solution
of (2.23) therefore contains the frequencies co„ ■\CL0)-1/2, co, and «, • We remember,
however, that the signal circuit is tuned so that it does not contain appreciable currents
of frequencies co,- and co„ . Thus, by making co» and co, greatly different than coq l(CL0)~1/2,
Eq. (2.23) is essentially

w + cbj--"' (2-25>
In the variable $, the input has the frequency 1, and if we desire to have a solution
with the same frequency we note from Eq. (2.25) that

<oo = (CLoy\ (2.26)

Under these conditions, the solution of Eq. (2.25) is

i0 — G sin $ + H cos $, (2.27)

and our assumed solution has the form

i = i0 = G sin ut + H cos co£, co = co0 = (CL0)~1/2. (2.28)

The form of i0 does not depend on K and, therefore, does not depend on U. The next
step is to get a differential equation by setting the coefficient of K' to zero. This, of
course, does depend on 2(1). For the general term to the nth power having the coeffi-
cient K, the resulting differential equation is:

. (A rG , 2UlH\ , , (-B , rH , 2^ .< + ii = I—; T~ H J cos $ + I-T "I T "I / sm $
\0)oJUq OJoLsq COq / XOJo^O 0)qLjo w0 '

=^-1" (/ + ior\ (2.29)COq CI

where i[ = dijd$) i" = d2ijd$2, f" = d2f/d$2.
We must now insure that Eq. (2.29) has a periodic solution. This requires that

the coefficients be zero for any terms on the right whose frequency is 1. The last two
terms are

1 = ii + % = Ci sin (w,2 + ©0 + c„ sin (co„i + ©„),

/" = \ ji = —sin («,•« + ©,) sin (topt + ©„).
CO dt CO CO

Thus, the term — 2co1/"/co0 will introduce currents of frequencies co,- and co„ . We have,
of course, required that there be no such currents in the signal circuit. This can be
realized in ix by making cox = 0. Thus Eq. (2.29) becomes

i" + ii = (-4 r-j~) cos $ + (-j- + sm $ + ^ (/ + ioT+1, (2.30)
\G3qJ-Jq 0)q1jq/ QJqLjq/ (LQ

and interest centers on the last term.
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If this term does not contain a current of frequency 1, our periodicity conditions
become

A - rG = 0, -B + rH = 0, (2.31)
but

output voltage _ Kr(G sin ut + II cos ut) + Kil /ri OON
gain — — . {Z.oZ)

input voltage KA sin ut + KB cos ut

With the periodicity conditions (2.31) satisfied, and with d2(j + ia)n+l/d<t>2

containing no terms of frequency 1, Eq. (2.30) is essentially i" + = 0 and (2.33)

has a solution

h = Gi sin $ + Hi cos 3>, (2.34)

in which Gi and Hl are to be determined by initial conditions. Suppose our initial condi-
tions are

at t — 0: i = H, i' — G.

These can be realized by making t'o(O) = H,i'0(0) = G, t'i(0) = i2(0) = 0,^(0) = i's(0) =0.
Thus Gi = Hi = 0 and Eq. (2.34) becomes

=0. (2.35)
Equation (2.32) now assumes the form

. _ rG sin ut + rH cos cot _ 1
gaU1 ~ A sin ut + B cos ut (2.36)

Therefore, to an approximation involving the first power of K, if the nonlinear expression

i?»+

does not contain a term of unit frequency, the system will not amplify. The next question
is: how can we make this expression contain a term of unit frequency

Case I: n = 1.
(/ + io)n+1 = do + /)2 = [to + (ii + iP)T — il + 2 i0ii + 2 i0ip + i\ + il + 2 i{ip

i0 = G sin ut + H cos ut = F sin (ut + ©)

= Ci sin (u{t + ©<)

iv = cv sin (uvt + 0P)

Thus the terms in the expansion will yield Fourier components of frequencies as follows:

il —» 2«, il —> 2uit il —> 2up
2i0ii -^u-j-ui and u — u{, 2i0ip —>u + uP and u — up, 2ixip —>Ui + up and u{ — up.

Case II :n = 2.

(/ + io)"+1 = (io + /)3 = il + 3t'o/ + 3i0/2 + f

= il + 3il(ii + ip) + 3 i0(i2i + 2 i.zjj) + (t'J + 3 i\iv + 3 i&l + il).
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io —> co and 3co, 3ioi< —» 2co + co< and 2co — co( and to{,

Bilip —» 2co + 01D and 2co — co2 and cop, —»co + 2co,- and co — 2co; and co,

6i»'p —> [co + («,- + «,)] and [to — (to,- + co,)],

—> co -f- 2t0j, and coB and co — 2coP and co, —» co; and 3co,-,

—» (2coj + cop) and 2co, — co„ and co„,

3i,ip —»co, + 2cop and co,- — 2cop and co,-, ip —>co„ and 3cop.

Case III: n = 3.

(J + ioT+1 = (io + /)4 = it + 4 f0f + 6ioT + 4i„f + f
= io + 4io(i< + ip) + 6io(i,- + ip)2 + 4i0(t'i + iP)3 + (i< + kY

do + ft — io + 4t'oii + 4t'oip + 6i'o(^i + 2i,-ip + zp)2

+ 4i0(i1 + 3z,ip + 3i,i~p + tp) + (i,- + ipT
Consider these terms one by one to determine the possible frequencies listed below.

io * (0 + 2co)(0 + 2co) = 2COj 4cO, 4:ilii = (co + 3co)cO; —» CO =fc CO,-, 3cO ± CO;,

iilip —-> co ± cop, 3co ± Up, Gi'oi2, = (0 + 2co)(0 + 2co<) —> 0, 2co, 2co,-, 2co ± co,-,

I2iliiip = (0 + 2co)(co,-)(coP) —» (co< + 2co ± co,)(cop) = co< ± co„, (2co =fc to,) ± cop

6itil —» 0, 2co, 2coP, 2co ± 2coP, 4i0l- —>co, ± co, 3co,- ± co, 12i0iiip —> co ± co„, (2co,- ± co) ± coP,

12i0iii2 — > co,- rfc co, (2coP =fc co,-) db co, Aiail —> cop d= co, 3cop ± co,

t'i —» 2co,-, 4co;, <±i\iv —> co; ± cop, 3cov ± co„,

—» 0, 2co,-, 2coP, 2co,- =fc 2coP, 4i<ip —* Up ± coi; 3cop ± co,-, —» 2c0p, 4cOp.

We see, therefore, that without further restrictions there are many ways to introduce
terms of frequency co. One way is to require that

Wp = co — co,- (2.37)

without any fixed integral relationships between the frequencies. This results in a
contribution from the term 2itip from Case I and the term from Case III. Assum-
ing that the Case I term adequately represents the nonlinearity, we consider only the
term

2iiip = 2CpCi sin (co,f + ©0 sin (upt + ©E)

= c.cpjcos [(co, - up)t + (0,- - 0,)] - cos [(co,- + ojp)t + (0,- + ©p)]}.

Using condition (37), we have only to investigate the term

(/ + iof = —c.Cp cos (cot + 0p + 0,), (2.38)
from which

^2 (/ + io? = +c,Cp cos (3> + <j)a = 0p + 0i

= (+CiC„ cos <j — (c,cp sin <r) sin 3>. (2.39)
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Thus, Eq. (2.30) becomes

• (A rO , \ , , f-B , rH . \ . .= I—7  —f~ + cfip cos a ] cos $ + I—y~ "I t c*'cj> sin <t I sin $, (2.40)
\Cx)q1Jq C00i^o ' \OJo-Lq 0)qLjq J

so that our periodicity conditions become

A rG , n —B rH . . .■—7- 7—b CiCp cos <r = 0, —j—1 j c.-c,, sin <r = 0. (2.41)
0)o±Jq CCqLjq WqLjq 0)qL/q

If we let 0 be the output voltage, then

|0[ = KrVG2 + H2
or

|02| = KV(G2 + H2). (2.42)
From Eqs. (2.41), we deduce

rG = A — k cos 0-, rH = B — k sin a, where k = cfi„wJjQ. (2.43)

Thus,

|02| = (A2 — 2Ak cos <r + k2 cos2 a + B~ — 2Bk sin <j + k2 sin2 cr)K2,

■7- |02i = (2Ak sin <7 — 2Bk cos er)JC2; -^-5 |02| = (2Ak cos a + 2Bk sin c)K2, (2.44)
0(T OCT

and
sin <r = -£(A2 + B2Y1/2) cos <r = -A(A2 + B2)~1/2 (2.45)

is the best phase relationship in the sense that it will give the maximum output. We
are given A and B by the input, and, therefore, Eq. (2.45) determines <7. The maximum
amplitude of the current which flows in the pump circuit determines c„ . For any partic-
ular system c„ is determined by the voltage applied to the pump. Thus c„ is known.
The value of c,- , the maximum amplitude of the current which flows in the idle circuit,
is determined by the parameters of the idle circuit and the emf across the nonlinear
element. The idle circuit is shown in Fig. 5.

The emf ENL across the nonlinear element is given by

| (LI) = | [L„( 1 - KI)I] = L0 jt (J - KI2) = Enl, (2.46)

where the current I through the nonlinear element is

I — + »,•(«,•) + ijpiv) ■ (2.47)
Thus,

Enl = [(i + ii + iP) — K(i + ii + %)2]- (2.48)

The only part of Eq. (2.48) which will affect the idle circuit is the part which has
a frequency to,- . For our purposes, we therefore have

Enl = L0 jt [ii - Kii + i< + ip)2]. (2.49)
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Consulting Case I and using Eq. (2.37), Eq. (2.49), we find

E hl — L0 — \ii 2Kiip]. (2.50)

Substituting the values of the currents into (2.50) we have

Enl = L0 [Ci sin (cCit + ©,) — Kc„F[cos (w — up)t + 0 — ©„)

— cos (w + wp)« + 0 +©„]}. (2.51)

Setting w — wP = — u( , which means using Eq. (2.37), and discarding the last term,
we may write (2.5) as

Eni = L0 ^ {ci sin (uit + ©,) — KcpF cos (—&>,< + 0 — ©„)}

= UiCiL0 cos $, + KufipF sin (<£, + 5), (2.52)

with = a+ 0,- and 5 = 0P — 0 — 0( or

Enl = [co,CiL0 + Ku,cpF sin 8] cos $,• + [Ku,cpF cos 8] sin . (2.53)

To the first order in K, the magnitude of ENL is given by

\ENL\ = + 2JciCpKF sin 8 + ■ ■ -]1/2. (2.54)
Now

| = oiiCi or Enl = ZiCi, (2.55)

where Z< is the impedance of the circuit shown in Fig. 5. From this figure, we see that

Z\ = R\ + -J-? = R2i + <£L2a since usually co< = (CiL0)~1/2. (2.56)

Combining Eqs. (2.54), (2.55), (2.56), we therefore have

^c)Ll + 2u\CicpKF sin 8 = Rtf + co?L02c?

from which we find
^ = (2Kw\cpF sin o)/R] (2.57)

if Ci 9^ 0. Since cP is known, we write

cfip = KFM, where M = (2a%cl sin 5)/ft;. (2.58)
Equations (2.41) can now be written as

A   r(r — R rH
 y~ + KFM cos <7 = 0, -j- + ~ KFM sin <r = 0. (2.59)

COqJUo 0)qLjq C0q JUq 0)qL/q

Consider now the case of an input voltage

E = i£Asina><; B = 0. (2.60)

Equation (2.45) yields a = 0, and the second Eq. (2.59) yields H — 0. We thus have
left only the first Eq. (2.59) which becomes

A rG
COqZ/o OIqLq

+ KGM = 0. (2.61)
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Equation (2.61) can be solved for G in the form

8 - ki - K-GAO whete Q~"~R' <2'62)

From Eq. (2.42) the magnitude of the output voltage is KrG. Thus the gain is given by:

gain = 1 - k2qm' (2-63)

Provided we supply a current through the pump and have nonlinearity in the inductance,
we have an amplifier. We note the gain to this approximation does not depend on the
input amplitude.

We have just completed an example of an amplifier pumped directly. They can,
however, also be pumped subharmonically. If we return to the nonlinear terms intro-
duced by Case III, we find listed the possible frequencies. Two terms interest us at
this time:

6i*il —» 2w( ± and 4i.il —* 3gj„ ± co,-. (2.64)
Suppose we choose pump and idle frequencies in such a manner that

2co< ± 2co„ = ±co or specifically 2co„ = 2co< + co. (2.65)

If now we let 2coP — co£ and = co< , Eq. (2.65) becomes

COp = CO,' + CO, (2.66)

which is the subharmonic case presented in Fig. la of the report by Mortenson (7).
If we use the second Eq. (2.64) and write it in the form

3cop = coj + co or cop = co0 + co with co£ = 3co„, (2.67)

we have the results given in Fig. lb of this report. Thus, the perturbation technique
leads once again to some well known results. By substituting the values of the currents
into Equations (2.64) the gains could be solved for as in our previous example.

The perturbation method is so general and so powerful that it can be used to de-
termine the pumping frequencies which result in amplification for all types of parametric
amplifiers (8). It readily predicts the following well known cases:

co„ = co — oh up converter type,
co„ = co + cox negative resistance type,
co„ = co + co degenerate type,

2co„ = 2coi + co \ subharmonic pumping,
3co„ = Wj + co j subharmonic pumping.

Many other pumping frequencies are indicated and some might be worthy of further
consideration. The important point here is that all are suggested by the same general
method, namely the perturbation method.
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